
"7 AD-A085 671 MASSACHUJSETTS MYS OF TECH CAMBRIDGE LAB FOR COMPUTE-ETC F/6 9/2
TOWARDS A THEORY FOR ABSTRACT DATA TYPES.(U)
JU 80 D KAPUR NO001I-75-C-0661

UNCLASSIFIED MIT/LCS/TR-237

1' Blhhhhhhhhh-hEIIIIIIEEEE
iuuluuunulin

-IIEIIIIEIIEE
-iEiiEiiEi
-- i-.--iii

SECURITY CLASSIFICATION OF THIS PAGE (3~S., Does Entered)__________________

Ph.D.Thesis - March 1980

_14. MOIORN AGNYNM6 ORS(IdfeetfoCnrihdOfc) . SECUORIY CLAS. REOf T NUBEpR

G RDe pa b nt ofq1the-CNavy1

9. PERFTRINTORNATEN NAME AhNs AReport)POJ TS

'1 Iis dourt hs en roe for publice releace ""aMnWW sale; IT M8E I

11. SUC LNT ARY OES NAEADADES N / s ----

ARPAlerentatof DefnrrPrgrmtDreto
1400KE WilOs(ontiu Bolevrsede !'nSE OeFsar Pi dnyb lokmbr AGeESs

AltaTpSpcfton Language Verification7

DataAbormaction s antics uncProof ie
TypeingebrA221 C1nistnc OCSufieCONDzNRAleNa

10. AISTRACUTIO STATEfE (ofth ids i ecar L IE:tf yboc ubr

Thi rorou s eeoprk e for tdinpmubrleas dat tpsavgodte;nit
optssrban oeis ehiitingecpinlbhairi eeoed h rmwr

Ierrhia aITIUINd TMENoulastrctuered inmok0I dat ren frvReort

The ental otio inthi fraewok i thedefniton o a atatype. n algeaic an
Abehvtral Dappac fore dxeion aDaatpieeoeduchich focses nh

DaStUIT CLASSIFICATIO Seatcrof TehiquAe ~TyeAlers ositny u iiA >Cnlens

WCUVmTV CLASIWICATO OF THIS PA06t Se RmW

20.

""input-output behavior of a data type as observed through its operations. The definition of
a data type abstracts from the representational structure of its values as well as from the
multiple representations of the values for any representational structure.

A hierarchical specification language for data types is proposed. The semantics of a
specification is a set of related data types whose operations have th behavior captured by
the specification. A clear distinction is made between a data typ~'and its specification(s).
The normal behavior and the exceptional behavior of the "operations are specified
separately. The specification language provides mechanisms to specify (i) a precondition
for an operation thus stating its intended inputs, (ii) the exceptions which must be signalled
by the operations, and (iii) the exceptions which the operations can optionally signal. Two
properties of a specification, consistency and behavioral completeness, are defined. A
consistent specification is guaranteed to specify at least one data type. A behaviorally
complete specification 'completely' specifies the observable behavior of the operations on
their intended inputs.

A deductive system based on first order multi-sorted predicate calculus with identity is
developed for abstract data types. It embodies the general properties of data types, which
are not explicitly stated in a spec fication. The theory of a data type, which consists of a
subset of the first order properti s of the data type, is constructed from its specification.
The theory is used in verifying programs and designs expressed using the data type. Two
properties of a specification, weji definedness and completeness, are defined based on what
can be proved from it using different fragments of the deductive system. The sufficient
completeness property of Guttag and Horning is also formalized and related to the
behavioral completeness, property. The well definedness property is stronger than the
consistency property, because the well definedness property not only requires that the
specification specifies at least one data type, but also 'captures the intuition that it preserves
other specifications used in it thus ensuring modular structure among specifications. The
completeness property is stronger than the sufficient completeness property, since in
addition to the requirement that the behavior of the observers can be deduced on any
intended inlput by equational reasoning, it also requires that the equivalence of the
observable effect of the constructors can be deduced from the specification by equational
reasoning.

A correctness criterion is proposed for an implementation coded in a programming
language with respect to a specification. It is defined as a relation between the semantics of
an implementation and the semantics of a specification. It does not require a correct
implementation to have the maximum amount of nondetenninism specified by a
specification. A methodology for proving correctness of an implementation is developed
which embodies the correctness criterion.

IACUUITV CLASIPICATION OP THIS PAS(llhe. Dt wmntreQ

TOWARDS A THEORY FOR ABSTRACT DATA TYPES

DEEPAK KAPUR

Copyright Massachusetts Institute)f Technology 1980

May 1980

Thbis research was supported in part by the Advanced Research Projects Agency of the
Dcpartment of Defense, monitored by the Office of Naval Research under contract
N00014-75-C-0661, and in part by the National Science Foundation under grant
MCS'74-21892'AO1.

Massachusetts institute of Technology
Utboratory ror Computer Science

Cambridge Massachusetts 02139

-2-

Towards a Theory for Abstract Data Types

Abstract

A rigorous fram ework for studying immutable data types having nondeterministic
operations and operations exhibitin g exceptional behavior is developed. The framework
embodies the view of a data type taken in programming languages, and supports
hierarchical and modular structure among data types.

The central notion in this framework is the definition of a data type. An algebraic and
behavioral approach for defining a data type is developed which focuses on the
input-output behavior of a data type as observed through its operations. The definition of
a data type abstracts from the representational structure of its values as well as from the
multiple representations of the values for any representational structure.

A hierarchical specification language for data types is proposed. The semantics of a
specification is a set of related data types whose operations have the behavior captured by
the specification. A clear distinction is made between a data type and its specification(s).
The normal behavior and the exceptional behavior of the operations are specified
separately. The specification language provides mechanisms to specify (i) a precondition
for an operation thus stating its intended inputs, (ii) the exceptions which must be signalled
by the operations, and (iii) the exceptions which the operations can optionally signal. Two
properties of a specification, consistency and behavioral completeness, are defined. A
consistent specification is guaranteed to specify at least one data type. A behaviorally
complete specification 'completely' specifies the observable behavior of the operations on
their intended inputs.

A deductive syktem based on first order multi-sorted predicate calculus with identity is
developed for abstract data types. It embodies the general properties of data types, which
are not explicitly stated in a specification. The theory of a data type, which consists of a
subset of the first order properties of the data type, is constructed from its specification.
The theory is used in verifying programs and designs expressed using the data type. Two
properties of a specification, well definedness and Completeness, are defined based on what
can be proved from it using different fragments of the deductive system. The suifficient
completeness property of Guttag and Horning is also formalized and related to the
behavioral completeness property. The well definedness property is stronger than the
consistency property, because the well definedness property not only requires that the
specification specifies at least one data type, but also captures the intuition that it preserves
other specifications used in it thus ensuring modular structure among specifications. The

-3-

completeness property is stronger than the sufficient completeness property, since in
addition to the requirement that the behavior of the observers can be deduced on any
intended input by equational reasoning, it also requires that the equivalence of the
observable effect of the constructors can be deduced from the specification by equational
reasoning.

A correctness criterion is proposed for an implementation coded in a programming
language with respect to a specification. It is defined as a relation between the semantics of
an implementation and the semantics of a specification. It does not require a correct
implementation to have the maximum amount of nondeterminism specified by a
specification. A methodology for proving correctness of an implementation is developed
which embodies the correctness criterion.

Name and Title of Thesis Supervisor: Barbara H. Liskov
Associate Professor of Electrical Engineering
and Computer Science

Key Words and Phrases: Abstract Data Type, Data Type, Data Abstraction, Type Algebras,
Nondeterminism, Exceptions, Specification Language, Semantics,
Consistency, Behavioral Completeness, Deductive System,
Verification, Proof Technique, Sufficient Completeness,
Completeness, Well Definedness, Implementation Correctness

This report is a minor revision of a thesis of the same title submitted to the Department of
Electrical Engineering and Computer Science in March, '80 in partial flfillment of the
requirements for the degree of Doctor of Philosophy.

-4-

Acknowledgments

I am thankful to my thesis supervisor, Professor Barbara Liskov, for her patience and
encouragement during the thesis research and especially during the later stages; to
Professor John Guttag for posing many challenges and for many suggestions leading to
improvements in the presentation of the thesis; to Professor Carl Hewitt for helping me
organize and present my ideas in the early stage of the research; and to Professor Hal
Abelson for diligently reading the final draft and making many helpful comments.

My officemates, Vaidis Berzins, Srivas Mandayam, and Carl Seaquist have helped me in
many ways during the thesis research. They gave me an audience whenever I needed,
helped me organize my ideas, and found time to read my work whenever I asked them
irrespective of their other important responsibilities. Carl and Srivas provided a very
stimulating and encouraging atmosphere during the last year. I am also thankful to Russ
Atkinson, Moms Krishnamurthy, Dave Musser, Gene Stark, and Jeannette Wing for their
helpful comments. Eliot Moss is to be thanked for producing and maintaining the software
necessary for the production of this document.

The graduate study at MIT has provided me a unique opportunity to live outside of my
own country which has been a tremendous learning experience. Besides computer science,
I have learnt a great deal about life, this country, my country, and myself, which has
fundamentally changed my attitude and outlook towards life. For this, I am indebted to
the students and staff of the Seminar on International Students and Their Participation in
Development, and my friends, especially Arvind, Ashok, Carl, Kanchan, Krishna,
Mukundan, Nagu, Ravi, Rashid, Sekhar, Srivas, Vaqar, and Vinod. Without their
encouragement and interest, continuing the thesis research would not have been possible.
Roli has contributed to the tompletion of the thesis in her own unique way; in no way can I
adequately express my gratitude to her.

This research was supported in part by the Advanced Research Projects Agency of the
Department of Defense, monitored by the Office of Naval Research under contract
N00014-75-C-0661, and in part by the National Science Foundation under grant
MCS'74-21892'A01.

0'

4

IL,
"if "l 'j g

-5-

Table of Contents

1 . Introduction... 9.

1. Scope and Approach of the Thesis 11.
1. Scope and Assumptions... 11.
2. Definition of a Data Type .. 11.
3. Specification Method .. 13.
4. Deductive System ... 17.
5. Correctness of Implementation..................................... 18.

2. Related Work... 19.
3. Outline of the Thesis....................................... 22.

2. Definition of an Abstract Data Type 23.

1. Informal Description of a Data Type..................... 26.
1. Terminology.. 26.
2. Hierarchical Structure... 28.
3. Minimality Property.. 29.

2. Formalism.. 31.
1. Type Algebras.. 32.
2. Examples of Type Algebras ... 35.
3. Interpretation of Terms.. 37.
4. Observable Behavior .. 39.

1. Definitions of Observable Equivalence and
Distinguishability .. 41.

2. Reduced Algebras ... 45.

5. Behavioral Equivalence of Type Algebras......................... 45.
6. Definition of a Data Type .. 49.
7. Observable Equivalence and Distinguishability of Terms 51.

3. Exceptional Behavior of a Data Type 53.
1. Assumptions about Exception Handling Mechanism 53.
2. Formalism .. 56.

1. Terms, Exception Terms, and Interpretations 57.
2. Examples of Modified Type Algebras 58.
3. Observable Behavior and Distinguishability.................. 59.
4. Comparison with Goguen's Approach......................... 62.

3. A Simpler Approach ... 63.

4. Mutually Recursive Data Types.......................... 66.

-6-

3. Specification of an A bst ract Data Type 68.

1. Specification Language 72.
1. Operations ... 73.
2. Auxiliary Functions.. 74.
3. Restrictions .. 77.

1. Preconditions .. 77.
2. Exception Conditions .. 79.
3. Discussion.. 80.

4. Axioms..81l.
5. Specifying Nondeterministic Operations 83.
6. Specification of Mutually Recursive Data Types 85.

2. Semantics of Specification Language 86.
1. Specifications without Auxiliary Functions....................... 87.

1. Restrictions .. 88.
2. Axioms.. 89.

2. Specifications with Auxiliary Functions 91.
3. Semantics of a Specification.. 92.

3. Specification of a Data Type and
Equivalence of Specifications 94.

4. Specification of Bool 98.*5. Properties of a Specification 99.
1. Consistency.. 99.
2. Behavioral Completeness.. 102.

1. Partial Isomorphic Equivalence............................... 103.
2. Isomorphic Embeddability..................................... 104.
3. Partial Isomorphic Embeddability............................ 106.
4. Definition of Behavioral Completeness 106.

6. Comparison With Related Works...................... 109.

4. Deductive System 112.

1. Preliminaries... 115.
2. Theory of Data Types without Nondeterminism and

without Exceptional Behavior 119.

1. Derivation of Nonlogical Axioms................................... 121.
2. Equational Subtheory .. 122.
3. Distinguishability Subtheory...................................... 123.
4. Inductive Subtheory ... 124.

1. Infinite Induction Rule.. 125.
2. Rationale for an Infinite Induction Rule 128.
3. Use of the Induction Rule......................128.
4. Specifications with Nontrivial Preconditions

for Constructors.. 131.

5. The Full Theory... 134.
6. Properties of a Specification 138.

-7-

1. Sufficient Completeness 138.
2. Completeness... 141.
3. Well Definedness... 142.

7. Automation of IND(S)... 143.

3. Theory of Exceptions Without Nondeterminism....... 144.
1 . Derivation of Nonlogical Axioms................................... 145.

1. Restrictions Component 145.
2. Axioms Component... 146.
3. Definition of N?Di .. 147.

2. Equational Subtheory .. 149.
3. Distinguishability Subtheory...................................... 151.
4. Inductive Subtheory ... 152.
5. The Full Theory... 153.
6. Properties of a Specification 157.

1. Sufficient Completeness....................................... 158.
2. Completeness and Well Definedness, 160.

4. Theory of Nondeterminism.............................161.

1. Transformation Procedure TR..................................... 163.
2. Th(S)... 167.
3. Data Types with Exceptional Behavior........................... 168.
4. Properties of a Specification 173.

S. Strong Equivalence of Specifications 175.

5. Correctness of Implementation...................176.

1. Correctness Criterion and
Overview of Correctness Method...................... 178.

1. Semantics of an Implementation 179.
2. Correctness Method ... 181.

1. Nondeterminism .. 182.
2. Definition of Correctness 185.

2. Implementation Structure and Semantics............. 187.

1. Procedures -ApproachlI... 188.
2. Procedures - Approach 11..188.
3. Properties of the Encapsulation Mechanism 191.
4. Semantics of an Implementation 195.

3. Correctness Method 196.
1 . Auxiliary Functions in a Specification 196.
2. Preservation of Inv ... 196.
3. Termination of Procedures .. 197.
4. Proving Restrictions and Axioms.................................. 197.

1. Preservation of Equivalence Relation........................ 198.
2. Restrictions... 199.
3. Axioms .. 201.

5. Nondeterminlstic Procedures..................................... 202.

-8-

6. Pseudo-Nondeterministic Procedures 203.

4. Recursive and Mutually Recursive Implementations.. 205.
1. Recursive Implementations ... 205.
2. Mutually Recursive Implementations 209.

6. Conclusions .. 210.

1. Summary of Contributions 210.
2. Directions for Further Research 212.

References .. 216.

Appendix I. Elaboration of Scope and Assumptions 224.

1. Immutable and Mutable Data Types 224.

2. Exceptional Behavior ... 225.

3. Nondeterminism ... 225.

Appendix II. Definitions of Algebraic Concepts and
Proofs of Theorems in Chapter 2 227.

1. Congruence, Homomorphism, and Isomorphism 227.

2. Proof of Theorem 2.2 ... 229.

3. Elaboration of the Definition of Behavioral Equivalence
and Proofs of Theorems 2.5 and 2.6 230.

Appendix Ill. Proofs of Theorems in Chapter 4 236.
Appendix IV. Specifications of Data Types used in

Chapter 5 .. 246.

-9-

1. Introuc~ion

The role of abstraction, modularity and hierarchical structure has been well

*recognized in the literature on program design and construction [12, 66, 73]. Data

abstraction, in particular, has been found to be a useful abstraction mechanism in the

design and construction of well structuired programs 1511.1 Most of the recent

programming languages encourage the use of abstract data types by providing an

encapsulation mechanism for implementing them 165, 49, 52, 75, 45, 11. It is necessary to

develop a rigorous foundationi for abstract data types so that the informal concept of an

abstract data type can be placed on a firm and sound basis, and various aspects of this

concept can be studied and analyzed32

In this thesis, we develop a framework for abstract data types. The central notion

in this framework is the definition of an abstract data type. We develop a behavioral

method for defining a class of abstract data types, called imm~utable data types [49, 52]. An

immutable data type is defined as a set of behaviorally equivalent algebras having

interpretations for the values and the operations of the data type. Behaviorally equivalent

algebras have the same behavior as observed through their operations. We propose a

specification language for abstract data types. The semantics of a specification is a set of

related data types sharing the common behavior captured by the specification. We make a

clear distinction between a data type- and its specification(s). We develop a deductive

system for abstract data types embodying their general properties which are not explicitly

stated in a specification. We use the deductive system to prove properties of an abstract

data type from its specification. We propose a correctness criterion for an imnplementation

of an abstract data type with respect to its specification, and develop a methodology for

proving correctness of an implementation with respect to a specification which embodies

the proposed criterion.

1. TIhec terms abstract data type. data type, data abstraction, and type arc used synonymously in this thesis.
2. I iskov and Zillcs 1471 emnphasize thc nccd for rigorously developing thc mathematical foundation of the

specification methods for abstract data types.

-10-

The main contribution of this research is a framework for abstract data types that

is rigorous and that brings together various aspects of abstract data types in a unified and

coherent way. Our approach is better than other similar attempts, in particular the initial
algebra formalism of the ADJ group [23] and the category theory formalism of Goguen
[20, 7, 301, because it is more in tune with the way programming languages support the

mechanism of abstract data type. The framework incorporates important and useful

features such as hierarchical structure and modularity. It is also broader in scope as it

handles data types with nondeterministic operations and with operations exhibiting

exceptional behavior. We had originally developed the framework without considering

nondeterminism and exceptional behavior; however, we did not encounter any major

difficulties in extending it to incorporate nondeterminism and exceptional behavior. This

makes us believe that our framework is robust and extensible for studying other aspects of

data type behavior not discussed in this thesis.

Our framework will be useful to a designer of a specification language for abstract

data types as it provides a semantic basis for studying and comparing such specification

languages. It can be used to define the semantics of a specification language. It also

provides a formal basis of automatic deductive systems for abstract data types, such as
AFFIRM [60]. It suggests an approach for studying and extending the method of I
reasoning about data types developed in the thesis. Other methods of reasoning can also be

developed using it. Furthermore, this research clarifies our intuitions about data type

behavior and provides a formal basis for them; as examples, the notions of consistency and

sufficient completeness advocated by Guttag and Horning [28], and the correctness

criterion for an implementation [29, 40] can be stated formally and analyzed.
Our research has been highly influenced by Peano's method of defining natural

numbers and McCarthy's method of defining S-expressions 157]. We are intellectually

indebted to Zilles [771 and the ADJ group [23], for their work on the algebraic approach for

abstract data types, and to Guttag et al. [25, 28, 29] for their work on specification

technique ror abstract data types which emphasizes programmers' intuitions about data

types. We cite other related works in Section 1.2, and state how we plan to compare these

works with that discussed in the thesis.

i.

1.1 Scope and Approach of the Thesis

We first state the scope of the thesis and the assumptions made about the data

type behavior. The scope and assumptions are further discussed in Appendix 1. Later, we

give an overview of the approach taken in studying four issues, namely, definition,

specification, deductive system, and implementation correctness.

1.1.1 Scope and Assumptions

In our research, we have considered immutable data types having
nondeterministic operations and operations exhibiting exceptional behavior. Every

operation is assumed to be total and computable; see [42] for a precise characterization of

computability on the values of a data type. It terminates on every input in its domain either

normally by returning a value of its range type or by signalling an exception. A

nondeterministic operation has only finitely many choices on an input. If a

nondeterministic operation signals on an input, it is assumed to behave deterministically on

that input. So, it does not have a choice between signalling and terminating normally on a

particular input. Henceforth, by a data type, we mean an immutable data type with the

above behavior, and by an object, we mean an immutable object or a value.

1. 1.2 Definition of a Data Type.-

Our formalism for defining a data type is algebraic in the style of Zilles [77] and

the ADI group [23]. Algebras are a natural and elegant way to define an immutable data

type, because an immutable data type is informally a set of values and a set of operations.

In a programming language supporting data types, the most important aspect of a data type

to its designer as well as its user is the input output behavior of its operations [37, 47, 25].

The values of a data type are manipulated only by its operations. Outside its

implementation module(s), the values are viewed abstractly as sequences of operations.

The details about the representations of values and the operations of a data type are of no

-12-

relevance. 3 To a user, two distinct representations are behaviorally identical if they cannot

be distinguished by the operations of the data type. We call this view the behavioral view

of a data type. The behavioral view abstracts from the representational structure of the

values as well as from the multiple representations of a value for any representational

structure, It is a further abstraction on the view of a data type adopted by ADJ 1231 and

Zilles [77] which abstracts only from the representational structure of the values.

In a programming language supporting modularity and hierarchical structure

such as CLU, EUCLID, etc., data types are implemented hierarchically one at a time

except that mutually recursive data types are implemented together as a group; data types

other than those being implemented are assumed to be implemented elsewhere.4 We take

the same approach in defining a data type. Our definitional method is hierarchical. We

distinguish between the data type(s) being defined and other data types used in the

definition. We call the data type(s) being defined the defined type(s) and other data types

in the definition the defining types. The distinction between the defined type and defining

types is significant because the behavior of the values of the defined type is observed by the

operations which return the values of the defining types. This was first pointed out by

Guttag, [251, and is the basis of his definition of the sufficient completeness property. We

use the data type boo/eon, which is self-contained and does not have any defining types, as

the basis of our definitional method. We assume its definition and that all boolean values

are distinguishable. In fact, any data type whose values can be distinguished a priori

(outside the formalism) can be used as the basis. For example, any data type directly

supported in a programming language whose values are distinguishable using the literal

(constant naming) mechanism in the programming language is a suitable candidate.

We classify the operations of a data type into two categories - the constructors,

which construct the values of the data type, and the observers, which return the values of

3. We will not be concerned abo~ut other issucs, such as efficiency of dhe operations, etc., relevant to a user of
a data type. Our formalism is limited in this sense.
4. Mutually recursive data types arc different from mutually recursive imnplementations, see Chapter 5 for a
detailed discussion.

-13-

the defining types. A value of a data type manifests its behavior through the observers with

the help of constructors.

Our approach for modeling the exceptional behavior embodies a practical view of

exceptions. Each exception is named, and can have arguments that carry information to its

handler from the place where it is signalled. The exceptional behavior of the operations

can also be used to distinguish among different values. An operation can distinguish

between two values by signalling on one value and terminating normally on the other

value, or by signalling different exceptions on different values.

The model used for nondeterminism is simple. If a nondeterministic operation

behaves nondeterministically on an input (i.e., it has a choice to return one of the many

possible results), we expect it to return every possible result. We do not consider how these

results are scheduled by an implementation of the operation. Two operations having

different amounts of nondeterminism are considered to have different observable behavior

because for some input, they can always return distinguishable results. Data types with

operations having different amounts of nondeterminism are thus considered different For

example, consider a data type finile set of integers with a nondeterministic operation

Choose which nondeterministically picks an arbitrary element from a nonempty finite set

of integers given as an argument. This data type is different from another similar data type

with the same set of operations which also have the same behavior with the exception of

Choose which is deterministic and returns the maximum integer of a nonempty set.

Furthermore, both data types are different from yet a third data type with the same set of

operations as the other two types except that Choose has a limited amount of

nondeterminism: Choose nondeterministically picks between the maximum and minimum

integers from a nonempty set.

1.1.3 Specification Method

A specification is mainly used, among other things, for reasoning about a data
type. So, our specification method is axiomatic in the style of Standish [69], Hoare [38, 39],

Guttag [26, 291, Nakajima ct al. [62], etc. A specification embodies information hiding [66],

i.e., it only specifies the behavior of a data type. Our specification method is hierarchical.

- 14-

Data types are specified incrementally, one at a time; a specification uses the specifications

of other data types. We believe that specifications should be modular and well structured

just like programs; otherwise, specifications of large problems become unmanageable and

difficult to understand.5

A specification expresses the properties particular to the data type(s) being

specified. It specifies (i) the domain, range, and the exceptions with the types of their

arguments, if any, signalled by every operation, (ii) the normal behavior as well as the

exceptional behavior of the operations. The general properties of data types which hold for

every data type, for example, the ninrnolip, proper' which requires that every value of a

data type is constructed by finitely many applications of its constructors, are not included in

a specification.

The normal behavior of the operations is specified as a restricted set of formulas

of first order multi-sorted predicate calculus with identity. A typical formula is a

conditional equation relating different sequences of operations under a condition. A

specification can use a finite set of auxiliary functions so that any data type with a finite set

of total deterministic computable operations can be specified in this way [43]. A

nondeterministic operation is specified like a deterministic operation by expressing the

properties of its possible results on an input, rather than by explicitly specifying its relation

which holds for all possible results of the operation and the input and does not hold for any

other value and the input. For example, in case of the data type finite set of integers, the

nondeterministic operation Choose is specified by relating its possible results to its set

argument, instead of explicitly specifying its relation Choose.p : Set-lnt x Int --> Bool

which holds for a set and an integer if and only if Choose can return the integer when

applied on the set.

The exceptional behavior of the operations is specified as a separate layer on top

of the normal behavior. Following Guttag [31], if an operation signals an exception, we

5. Burstall and Gogucn 171 and Nakajima et al. 162] also emphasize the need for structured specifications.

specify the condition on its input under which the exception is signalled.6 The

specification language provides mechanisms to specify the exceptions which must be

signalled by the operations as well as the exceptions which the operations can optionally

signal. The specification also allows a precondition on an operation to be specified, stating

that the behavior of the operation on inputs not satisfying the precondition is not of any

interest. A formula expressing the normal behavior of the operations holds only if the

input to the operations in the formula satisfy the specified preconditions and if the

operations do not signal; it thus has a restricted interpretation. A formula specifying the

normal behavior is called an axiomn. The preconditions and the exceptional behavior of the

operations is specified using restrictions.

Our approach of specifying data types is thus different from those of Zilles [77J

and the ADJ group 1231. In their approaches, a sp. Afication of a data type is a finite set of

identities (or conditional identities) presenting the set of algebras serving as the definition

of a data type. These identities are interpreted exactly the same way as in Universal

Algebra [4, 101. We are also not constrained to employ only "equational" reasoning,

instead, our reasoning method embodies the general properties of data types as is discussed

later.

The semantics of a properly designed specification is a set of related data types

which differ in the behavior intentionally not captured by the specification. If an operation

is specified to be nondeterministic, the semantics of a specification includes data types in

which that operation can have as much nondeterminism as desired insofar as the operation

behavior satisfies the axioms and restrictions expressed in the specification. We define

equivalence among specifications. We also state when a data type can be (precisely)

specified in the proposed specification language. We define two important properties of a

specification: The consistency property, which states whether a specification specifies any

data type; the behavioral completeness property, which guarantees that the observable

behavior of the operations is not left unintentionally unspecified. These properties ensure

6. Howcver, this way of specifying the exceptional behavior of the operations may be overly restrictive, as for
an operation, the subset of inputs on which it signals a particular exception may be very complex to specify,.

- 16-

that various components of a specification have the desired structure. Checking for these

properties is a step towards ensuring that the specification captures the intuition of a

designer.

In our research, a clear distinction is made between a data type and its

specification. In most of the literature on specification techniques for data types

[47, 25, 28, 29. 61, 77, 48, 371, this distinction is either not made or blurred if it is implied.
Most of the literature does not explicitly define what a data type is. The ADJ group [23]

was the first to our knowledge to explicitly state in their formalism a definition of a data

type and make this distinction. We believe the distinction between a data type and its

specification is useful and necessary in a formal treatment of data types. Given a definition

of a data type, different specification techniques can be developed to serve different

purposes, if needed, and their semantics can be given in terms of data types. Different

methods of reasoning about a data type can be developed incorporating the general

properties of data types with the definition of a data type serving as their basis. The

qulestion of whether a given data type can be specified using a particular specification

technique can arise only when this distinction is made; only then can different specification

techniques be compared in their expressive power. Only then it is meaningful to discuss

the properties of a specification technique such as the ease of expression,

comprehensibility, minimality, etc., [471. (See [341 for a similar discussion for programs.)

A specification plays an important role in our research. It is used as a standard for

checking the correctness of an implementation as well as for deriving properties of the data

types specified as is discussed in the next two subsections. It is an interface between the

programs using the data type and the program(s) implementing the data type. The

specifications of abstract data types are a major component of a program verification

system. Our specification method can be used to specify the behavior of the data

component of software designs; questions and inquiries about the data in a design can be

expressed and analyzed using the deductive system discussed in the next subsection. (See

the two survey papers on specification mcthods [47.. 481, where the need For writing formal

specifications is discussed. Outing and Horning 1321 discuss the importance of formal

specifications as a design tool.)

!

- 17 -

1.1.4 Deductive System

As was stated earlier, one of the main reasons for designing a specification is to

have an implementation independent description of the data type that can be used to

reason about the data type as well as to reason about the-designs and programs using the

data type. We propose a deductive system based on first order multisorted predicate

calculus with identity for deriving properties of a data type from its specification. The

deductive system embodies the general properties of data types which are not explicitly

stated in a specification but assumed in its semantics. These properties are derived from

the syntactic structure of the operations.

The deductive system has an infinite rule which captures the minimality property
of data types. The deductive system is powerful enough to prove inequalities. We
axiomatize the general properties of the exceptional behavior of the operations. Properties

expressed using nondeterministic operations can be proved. We construct a theory of a

data type, which is a large subset of its first order properties, from its specification. If a

specification specifies a set of related data types, evcry theorem in the theory constructed

from the specification holds for each data type in the set.

We define three other structural properties of a specification, namely, sufficient

completeness, well definedness, and completeness, based on what properties of a data type

can be deduced from its specification using different fragments of the deductive system.
We precisely state the sufficient completeness property defined by Guttag and Homing

[28] for a restricted set of specifications and extend it to specifications in our specification

language. This property requires that the behavior of the observers on their intended

inputs can be completely determined from the specification by purely equational

reasoning. We relate this property to the behavioral completeness property stated in the

previous subsection, which is model theoretic and which requires that the specification

completely specify the behavior of the observers on intended inputs. Recall that the

behavioral completeness property does not say anything about what can be deduced from

the specification. In this sense, the relation between behavioral completeness and sufficient

completeness reflects the power of the equational fragment of the deductive system.

The well definedness property is stronger than the consistency property, because

-18 -

the well definedness property not only requires that a specification specifies at least one

data type, but also that it (specification) is modular in the sense that it preserves the

specifications of other data types used in it.

The completeness property is stronger than the sufficient completeness property,

since in addition to the requirement that the behavior of the observers can be deduced on

aaiy intended.input by equational reasoning, it also requires that the equivalence of the

observable effect of the constructors on intended inputs can be deduced from the

specification by equational reasoning.

1.1.5 Correctness of Implementation

We state the correctness criterion for an implementation coded in a programming

language with respect to a specification as a relation between the semantics of the

implementation and the semantics of the specification. Roughly speaking, a correct

implementation implements one of the data types in the semantics of a specification. Our

correctness criterion is weak as it does not require a correct implementation to have +he

maximum amount of nondeterminism specified by a specification.

We develop a method for proving correctness of an implementation with respect

to a specification which embodies the correctness criterion. The method requires, among

other things, that the procedures implementing the operations satisfy the axioms and

restrictions in the specification when appropriately interpreted. We thus provide the

formal basis of the correctness method proposed by Guttag et al. [291 and extend it to

specifications specifying nondeterministic operations and operations exhibiting exceptional

behavior.

We distinguish among different procedures implementing an operation specified

to be nondeterministic, since the nondeterministic behavior of an operation on abstract

values can be implemented by a deterministic procedure .on the representation of these

abstract. values that returns different results on different but equivalent representations.

We call a procedure nondeterminisfic (respectively, delerministic) if it is nondeterministic

(respectively, deterministic) and it returns equivalent results on equivalent representations.

Otherwise, if a procedure returns different results on equivalent representations, then it is

- 19 -

called pseudo-nondeterministic irrespective of whether it is deterministic or

nondeterministic on the representations. We discuss the correctness method for these three

kinds of procedures implementing an operation specified to be nondeterministic.

1.2 Related Work

In this section, we discuss different definitional and specification methods for data

types, briefly stating the major differences as well as the main thrust of these works. The

detailed comparison of these works with ours is contained in the rest of the thesis where we

discuss various topics.

The definitional methods for data types can be broadly classified as (i) the

algebraic or model approach, and (ii) the axiomatic approach. In the model approach, a

data type is defined as an algebra satisfying certain properties, or as a set of such algebras.

ADJ [23] defines a data type in this way. Though Hoare [37], Zilles [77], Guttag [28], and

Berzins [3] do not explicitly define what a data type is, their approaches suggest that a data

type is defined us;rig the model approach. Our approach is also the model approach.

Nakajima et al. 1621 take the axiomatic approach; they define a data type as a first

order multi-sorted theory. Recently Nourani [631 has also discussed the use of a first order

theory for defining a data type. Though this view of a data type is useful in program

verification, there is no explicit model of a data type to match with the intuition of a

designer of the data type. If a first order theory is interpreted as in Logic [16] and its

models are taken as the modelsof a data type being defined, then there are nonstandard

models for a data type, which are of no relevance to its designer. A nonstandard model

does not satisfy the minimality property of data types discussed in the next chapter. Hoare

[38, 39] has also used the axiomatic approach for defining a class of data types.

A survey of specification techniques for data types can be found in [47] and [48].

The specification techniques can be broadly classified into three categories based on their

approach: (i) the model approach, (ii) the algebraic approach, and (ii) the axiomatic

approach. The model approach is used only in case a data type is defined using.the model

approach. A -data type is specified by presenting one of its models. Berzins [3] has

formalized and extended the model apjroach originally proposed by Hoare 137]. He has

-20-

also related his research to other works following the model approach. We discuss here the

algebraic and axiomatic approaches.

The algebraic approach has been proposed by Zilles [77] and the ADJ group [23];

in this approach, a set of algebras defining a data type is presented as a finite set of

identities or conditional identities. Burstall and Goguen [7] and Goguen [20] specify a data

type as an algebraic theory.

The axiomatic approach for specifying a data type can be used for either of the

two definitional approaches discussed above. If a data type is defined using the model.

approach, a specification using the axiomatic approach consists of the properties of the

models of a data type. Otherwise, a specification consists of a subset of the theory serving

as the definition of the data type. The axiomatic approach followed by Nakajima et al.,

Hoare [38, 39], and Standish [69] uses the full first order predicate calculus to-specify data

types. The approach advocated by Guttag et al. uses a restricted set of formulas, namely

equations and conditional equations.

Our approach is also axiomatic. A specification expresses the normal behavior of

a data type(s) (which is a set of algebras) as equations and conditional equations, and its

exceptional behavior as restrictions. As is stated in the previous section, these formulas are

interpreted using the restrictions in a different way than in the algebraic approach. In

contrast to the specification methods proposed by Nakajima et al., Hoare, and Standish, the

general properties of data types are not explicitly stated in our method. A specification

provides an incomplete (in the sense of Logic) first order axiomatization of the data types

being specified. From a properly designed specification, it is possible to derive most of the

interesting properties of a data type needed in program verification.

The major focus of Zilles' work and the ADJ group's work has been to extend the

theory of heterogeneous algebras to capture the meaning of data types. They have not

investigated how to use the definition of a data type for proving properties of programs

using data types. Zilles [76] has suggested an ad hoc method for establishing correctness of

an implementation of a data type; however, the method as well as its foundation have not

been fully developed. The ADJ group and Ehrig'et al. [15] have proposed an algebraic

approach for establishing the correctness of an implementation of a data type in which they

h 4.

-21.

have attempted to incorporate the algebraic semantics of the control structures of the

programming language used for the implementation. Although the ADI group's work is

rigorous, there are two main problems with it:

(i) it has not embodied the view of data types taken in programming languages, and is

thus useful only for a small set of data types, and

(ii) it is complex.

The approach taken by Burstall and Goguen [71 seems more promising than the ADJ

group's approach from the viewpoint of program verification, but, we have been told, its

category theoretic semantics again seems to introduce unnecessary complexity [301.

Guttag et a]. have focused on uising specifications for proving properties of data

types and programs using data types. The nice aspect of their approach is that it captures

the view of a data type taken in programming languages. Our research formalizes, provides

a mathematical basis for, and extends their approach.

The AD] group [231 has been the first to investigate rigorously the exceptional

behavior of a data type. In their method, the set of values of every data type is extended to

include a distinguished value, called error. Using special auxiliary functions which test

whether an arbitrary value is an error, they specify the exceptional and normal behavior of

a data type. Goguen [201 has enriched and structured their approach. Our approach is

based on Guttag's recent suggestions for separating the exceptional behavior of a data type

from its normal behavior [311.

-22-

1 .3 Outline of the Thesis

The second chapter introduce-s a formalism for defining a data type. We first

discuss the formalism for data types assuming that the operations do not signal exceptions.

Later, we extend the formalism to incorporate the exceptional behavior of the operations.

The third chapter describes the specification language, gives its semantics, and

defines the consistency and behavioral completeness properties of a specification.

The fourth chapter discusses the deductive system. We discuss how a theory of a

set of data types serving as the semantics of a specification can be constructed from the

specification. We fir~st describe the deductive system for specifications specifying neither

nondeterministic operations nor the exceptional behavior of the operations; later, we

discuss specifications specifying the exceptional behavior of the operations, and finally, we

incorporate nondeterminism. We discuss the deductive system incrementally introducing

its various components; we first discuss the equational theory, then the distinguishability

theory, later the inductive theory, and finally, the full theory.

The fiftda chapter discusses a correctness criterion for an implementation with

respect to a specification and a methodology embodying the criterion. The correctness of

recursive and mutually recursive implementations is also briefly discussed.

The sixth chapter presents conclusions and directions for future research.

- 23 -

2. Definition of an Abstract Data Type

In this chapter, we develop a formalism to define anl abstract data type. We take a

behavioral view for defining a data type in which every value of the data type is constructed

by finite]) many applications of its constructors and these values are distinguishable only

by mneans of its operations. We adopt the model approach: A data type is defined to be a

set of behaviorally equivalent type algebras, where a type algebra is an extended

heterogeneous algebra with additional properties needed to model data types. The.

syntactic structure of a data type determines the structure of type algebras in the set. Every

type algebra in the set is called a model of the data type. A model provides an explicit

meaning (interpretation) for the values and the operations of a data type; ill this way, it

captures concretely the informal description of a data type in our mind. The model

approach for defining a data type is closer to the intuition of a programmer than the

axiomatic approach as in [62, 631, where a data type is defined as a first order theory.

The crucial concept in the definition of a data type is that of behavioral

equlivalence of type algebras. The definition of behavioral equivalence captures the

informal notion that two behaviorally equivalent type algebras have the same behavior as

observed through their operations. We are interested in how the interpretations of the

values and the operations of a data type in a model behave, and not in how they are

represented. We have decided not to pick a particular model to be the definition of a data

type be-cause we do not want the irrelevant details of the model to be associated with the

data type. We have only considered the input-output behavior of the operations of a data

type.

Behavioral equivalence abstracts from (i) multiple representations of a value for

a representational structure as well as from (ii) the representational Structure of the values

in an algebra. Thus type algebras differing only in the representational structure of their

values are behaviorally equivalent; fuirthermore, type algebras using the same

representational structure but differing in the number of representations a value has are

also behaviorally equivalent. The property (i) above is achieved by defining a congruence,

called the observable equivalence relation, on a type algebra, and the property (ii) is

-24-

achieved by the standard algebraic concept of isomorphism. The distinguishability

relation, which is the complement of the observable equivalence relation, on the

representations of the values of the data type is defined inductively in terms of the

distinguishability of the representations of the values of the defining types of the data type.

(The basis of this induction is any data type with no defining types, and in particular, the

data type boolean whose two values, irue and false, are assumed to be distinguishable.)

Two representations are distinguishable if and only if there is a sequence of operations

having an observer as the outermost operation, that produces distinguishable results when

applied separately on the representations.

If the operations of a data type signal exceptions, then two representations can

also be distinguished due to the exceptional behavior of the operations. If a sequence of

operations signals on a representation and does not signal on the other, or if it signals

different exceptions on the two representations, then they are distinguishable.

The model used for nondeterminism is simple. If a nondeterministic operation

behaves nondeterministically on an input (i.e., it has a choice to return one of the many

possible results), we expect it to return every possible result. We do not consider how these

results are scheduled by an implenientation of the operation. Two operations having

different amounts of nondeterminism are considered to have different observable behavior

because for some input, they can always return distinguishable results. The definition of

distinguishability relation on representations of the values of a data type incorporates this

view of nondeterminism.

In the first section, we introduce terminology, define hierarchically structured

data types, and informally discuss the minimality property of a data type. We assume data

types to be hierarchically structured and defined one at a time. There are however no

technical problems in our formalism in handling mutually recursive data types which are

not defined separately. We outline the simple extensions of the formalism to such data

types in the last section of the chapter. Until the point where we define a data type, we

have used the notion of a data type in an informal way to motivate the formalism

developed.

In the second section, we first introduce the formalism for defining a data type

-25-

assuming that its operations do not signal exceptions. Our definitional method is

hierarchical; we assume that the definitions of the defining types are given. We motivate.1 and discuss in detail the distinguishability relation on the representations of the values. We
then precisely define the behavioral equivalence relation on type algebras.

In the third section, we incorporate the exceptional ,ehavior of a data type and

discuss extensions to the formalism introduced in the second section. We extend a type

algebra and the behavioral equivalence relation on type algebras to capture the normal as

well as the exceptional behavior of the operations. We compare our approach with

Goguen's approach of modeling the exceptional behavior [20.,21]. We also formalize a

simpler approach for modeling the exceptional behavior which has been generally assulmed

in the literature on algebraic specification of data types [25, 27, 77, 23]. We compare our

definition of a data type with the definition used by the ADJ group [23] which abstracts

only from the representation structure of the values in a type algebra.

-26-

2.1 Informal Description of a Data Type

We use the data type finite sel of inlegers for illustration: let Set-lnt be its name.

Set-lnt has been widely discussed in the literature [37, 76, 74, 31]. It has the following

operations:

Null a constant (or 0-ary operation) returning the empty set of integers;
Insert constructs a finite set of integers by adding a given integer to a giver fnite set of

integers;

Remove constructs a finite set of integers by deleting a given integer from a given finite set of

integers;
Has checks whether a given integer is an element of a given finite set of integers;

Size results in an integer giving the size of a given finite set of integers

In addition, we assume that Set-Int has an additional operation Choose, which has

non-deterministic behavior. Choose returns an arbitrary element of a given non-empty set

of integers; for the time being, we arbitrarily assume that Choose returns the integer '0' for

the empty set. This behavior of Choose for the emnty set may not be adequate for some

applications. In Section 2.3, we modify Choose so that it signals an exception for the empty

set.

2.1.1 Terminology

To simplify the mathematics, we assume that an operation has a cartesian product

(possibly empty) of data types as its domain and a single data type as its range. An

operation having a cartesian product of n data types (n > 1) as its range can be viewed in

one of the following two ways depending on whichever is more convenient: (i) The

operation is modeled as a family of n operations, each having the same domain as the

original operation and a different type in the cartesian product as the range, or (ii) the

cartesian product is viewed as a single type. We use the first method in the thesis.

Let D be the name of a new data type being defined, and fa be the finite set of

symbols naming its operations. Let A' stand for the set of names of data types appearing

either as a component of the domain or as the range of an operation in a. Let A be

- 27 -

A'- { D }.1 D is the defined type and every data type in A is a defining type of D.

In order to include the syntactic specification (i.e., the domain and range

specifications) of the operations, we index every operation a in a by a pair (d, r), where d is

a string made from the alphabet A' and r is an element of A'. d specifies the domain of a

and r specifies its range.

Let tnt stand for the data type integers and Bool stand for the data type boolean.

For Set-lnt, A = { tnt, Bool }, A' = I tnt, Bool, Set-tnt I and

it = I Null, Insert, Remove, Ilas, Size, Choose }. The index of Insert for example is

(Set-tnt - Int, int).

As is discussed in the first chapter, the operations of D can be classified as

constructors and observers. Let (c be the subset of a2 consisting of all constructors of D

(recall that a constructor is an operation having D as its range). For example, Null, Insert,

and Remove are the constructors of Set-Int. The constructors construct all the values of D.

Some constructors construct a value of D using only the values of the defining types of D.

We call such a constructor a basic constructor. For example, Null is a basic constructor of

Set-Int. Every data type is required to have at least one basic constructor; otherwise, D will

not have any values.

Let a be the subset of a2 consisting of all observers of D. An observer examines

the values of D; it takes at least one argument of type D, and returns a value of a defining

type of D. For example, Hlas, Size, and Choose are the observers of Set-tnt. Every

interesting data type must have at least one observer, otherwise there is no way to

distinguish among different values of D [25] other than by the operations signalling on the

values. An observer is also called an inquiry operation [77).

We thus assume that every operation of D either results in a value of D, or takes

an argument of type D, or both. We consider a data type having an operation not satisfying

this requirement to be not properly designed, because the behavior of such an operation

does not depend on the data type.

I. Henceforth we will not distinguish between a data type and its name, and between an operation and its
name, unless needed.

- 28-

Let and stand for the set of nondeterministic operations of D. We allow any kind

of operation, an observer or a constructor, to be nondeterministic. In our experience,

however, we have found that a nondeterministic operation is often an observer. 2

2.1.2 Hierarchical Structure

We define the following two relations on a set of data types for capturing the

dependency structure among the data types:

Def. 2.1 D directly depends on every D' E A, and does not directly depend on any other data

type. I

Def. 2.2 D depends on D' if (i) D directly depends on D', or (ii) there is a D" such that D

directly depends on D" and D" depends on D'. I

The direct dependency relation captures one level of hierarchical dependency. The

dependency relation is the transitive closure of the direct dependency relation. We define
(D)+ = I D'j D depends on D' }, and

(D)* = (D)+ U ID } .

If data types are designed so that every data type on which D depends is assumed to be

designed independently of D, then the dependency relation on (D)+ will not have any

cycles and is a strict partial order on data types. In such a case, data types are said to be

hierarchically structured, and they can be defined incrementally one at a time. Data types

on which D depends do not have to be designed in any particular order relative to D; any
approach, for example top-down, bottom-up, etc., is compatible. Unless stated otherwise,

we assume in the thesis that data types are hierarchically structured.

We assume that the partial order induced by the dependency relation on the set of

hierarchically structured data types has finite descending chains. The bottom of every

2. In case a constructor a is nondeterministic, a is usually derived with respect to a subset 07g of deterministic
constructors (2, C Qc) in the sense that a does not return any value that cannot be constructed using fhe
constructors in Qs.

-29-

chain is a data type having no defining type. Throughout this thesis, we assume that the

data type boolean does not have any defining type; Bool serves as the bottom element of

the chains in the partial ordering for all interesting data types as will be clear from the

discussion in Section 2.2. (The definition of Bool is given in Section 2.2.) We will often use

the structure induced by the dependency relation on the set of data types for inductively

defining properties of data types, as well as for proving properties about data types. Bool

will often serve as the basis step of such definitions and proofs (in general, data types

having no defining type serve as the basis).

2.1.3 Minimality Property

The requirement on a data type behavior imposed because of the modularity and

good program design considerations that its values be manipulated only by its operations

translates to requiring that its values be constructed only by its constructors, possibly using

abstractly the values of its defining types. Furthermore in a computer the values can be

constructed only by a finite sequence of operations, so the values of a data type constitute

the smallest set closed under finitely many applications of its constructors. We call this

property of a data type the minimnality property.

We require that every data type under consideration satisfy the minimality

property. This requirement constrains the implementations of a data type to be protected in

Morris's sense [59]. An implementation of a data type defined in a strongly typed language

that hides the representation of its (data type) values from its users by providing an

encapsulation mechanism, as in CLU, ALPHARD, etc., is protected. The minimality

requirement does not rule out data types defining 'infinite' values, insofar as these values

can be finitely described. 3

3. For example, we can dcfine a data type infinite sequence of squares, whose values are infinite sequences of
consecutive squares starting from n for cvery n _ 0. It has a constructor. Cons, which takes a natural
number as an argument and retLrns an infinite sequence. In addition, it has three observers - First, which
gives the first clement in the sequence: Rest, which gives the remaining sequence after stripping the first
sequence- and, Fual, which checks whether two infinite sequences are equal or not.

-30-

The minimality property serves as the basis of a powerful induction rule for a data

type D: To prove that a property P holds for D, i.e., for all values of D, we need to show

that P is preserved by every constructor of D. Wegbreit and Spitzen [721 called this

generator induction; Guttag et al. [27] called it data oype induction. We discuss this

induction rule in detail in Chapter 4 on the deductive system for data types.

Since every operation of D is assumed to be computable, it can be easily shown by

induction on data types, that the set of values of D is recursively enumerable.4 This is

based on the fact that the set of sequences of constructors is recursive. This thesis considers

data types with a recursively enumerable set of values and a finite set of total computable

operations.

4. A set S is recursive iff its characteristic function, which checks whether a given element is a member of S
or not, is total computable. A set S is recursively enumerable (r.e.) iff it is the range of a total computable
function. In other words, an r.e. set S can be listed by a total computable function.

- 31 -

2.2 Formalism

In this section, we describe the formnalism to state precisely what a data type is. To

simplify the presentation, we assume that data types do not have any exceptional behavior,

i.e., their operations do not signal any exceptions. Every operation terminates normally on

every input in its domain.

This section is organized as follows. We first extend the notion of a

heterogeneous algebra as defined in [4] to model nondeterminism; then we define a type

algebra to be an extended heterogeneous algebra with additional properties. The domain

corresponding to the defined type D consists of the representations of the values of D and

is called the principal domain of the type algebra. To extract the behavior of a type algebra

-is observed through its operations, we must

(i) abstract from the multiple representations of a value, assuming a particular

representational structure, and

(ii) abstract from the representation structure of the values and operations in a type

algebra.

To do the first, we define an interpretation of a term in a type algebra, where a term

expresses a sequence of operations. Terms are used to observe the behavior of the

representations of the values of the defined type in a type algebra in terms of the

representations of the values of the defining types. We define the observable equivalence

and disfinguishability relations on the principal domain of a type algebra. These relations

are defined inductively using the corresponding relations on the domains corresponding to

the defining types in the type algebra. Observable equivalence is an equivalence relation

and is preserved by the fulnctions in a type algebra; it relates two values having the same

behavior. We then define the behavioral equivalence relation on type algebras which relates

two type algebras having the same observable behavior. A data type is an equivalence class

defined by the behavioral equivalence relation, and every type algebra in the equivalence

class is a model of the data type. A model of a data type concretely defines the value set.

which is the principal domain of the model, and the operations of the data type.

Most of the definitions throughout this section are inductive; they make use of

-32-

the dependency relation, which is a strict partial order with finite descending chains, on
hierarchically structured data types. An inductive definition of a concept has three parts:

(i) Basis part, which deals with the case of a data type D having no defining type, i.e., its A

is the null set,

(ii) inductive part, which deals with the case of a data type having defining types, and
(iii) closure part, which states that the above two ways are the only ways of defining a

concept

To avoid repetition, we omit the closure part, and if the basis part can be derived from the'
inductive part by assuming a to be the null set, we give only the inductive part of the

definition. Some of the definitions - the definitions of type algebra (Def. 2.3),
distinguishability and observable equivalence relations (Defs. 2.6 and 2.7) and data type
(Def. 2.14) are mutually recursive. The definitions 2.3, 2.6, and 2.7 assume the definitions

of the defining types in A in their inductive part.
We would like to motivate various concepts and definitions introduced on type

algebras. So for exposition purposes, we may refer to a type algebra as though it is a model

of a data type being discussed.5

2.2.1 Type Algebras

A heterogeneous algebra as defined by Birkhoff and Lipson [4] is a finite indexed

set of sets (called domains in the thesis) and a finite indexed set of total functions. We
extend this definition to model the nondeterministic operations of a data type. An

extended heterogeneous algebra can have either a total (deterministic) function or a total
nondeterministic function.

A nondeterministic function f: X -, Y is similar to a function in mathematics with

the exception that it has a choice among a subset of possible results when applied on an
input x E X. Let 1(x) stand for an arbitrary result of applying f on x. f can be characterized

5. We are technically justified to do so as almost every type algebra is a model of some data type.

- 33 -

using a relation R C X x Y such that Rx) E R(x).6 If R(x) is a singleton set for some input

x, then f is said to be deterministic on x. By I r(x) I we will mean the set R(x); in this way

we do not have to refer to R. Since we assume every nondeterministic operation to have

finitely many choices on a particular input, I f(x) I is always a finite set. We admit that

calling f a nondeterministic function is an abuse of the term function; however, we feel this

term conveys the behavior of f well. Henceforth, by the term function we mean either a

mathematical (deterministic) function or a nondeterministic function, unless qualified. We

have chosen a nondeterministic function over the corresponding deterministic relation for

modeling a nondeterministic operation because (i) in contrast to the nondeterministic

function, the relation models the nondetenninistic operation indirectly, and (ii) it is

inconvenient and unnatural to express the behavior of a computation scheme involving

nondeterministic operations by means of the relations corresponding to the

nondeterministic operations.

The definitions of concepts such as congruence, homomorphism, isomorphism on

heterogeneous algebras [4) are revised for extended heterogeneous algebras in Appendix II.

Henceforth, we use the term heterogeneous algebra to mean an extended heterogeneous

algebra.

A iype algebra is a heterogeneous algebra with additional properties. For a data

type D, we are interested in type algebras having a particular structure, which is determined
by A' and ai of D. The sets A' and a serve as the index sets of the type algebras of interest

for D. We call such an algebra as an algebra of lype D or simply a type algebra when D is

evident from the context. The triple (D, A, 0) is called the (similari,) type of such an

algebra. An algebra A of type D consists of a domain corresponding to every type name

D' E A' and a function of the appropriate arity corresponding to every operation name in a.

The domain corresponding to D is the principal domain of A. The function corresponding

to a is called the interpretation of the operation symbol a in A. The domain corresponding

to a defining type D' E A is the interpretation of D'.

6. For a relation R. a subset of X X ', R(x) stands for the subset y <x, y> E R} of Y for an x E X, and
R(A) stands for { y I (x y> E R. x E A 1. where A C X.

-34-

We assume that every defining type D' in A of D is defined elsewhere and we are

given the models of D' (see Subsection 2.2.6 for the definition of a data type and a model of

a data type). The interpretation of a data type D' C A in an algebra of type D is fixed. We

use the models of each D' C A to define type algebras of D. The domain corresponding to

D' E A in a type algebra A of D is the value set of D' defined by some model A' of D'. A

type algebra A of D explicitly includes only the interpretations of the operation names of
D, and does not include the interpretations of the operation names of any defining type D'.
We assume that every operation name of a defining type D' has the same interpretation in

A of D as its interpretation in the model A' of D'. In this way, we define the interpretation

of every operation name of a data type D" C (D)* in a type algebra A of D. 7 An algebra A

of type D is thus really a huge structure having interpretations for every data type in (D) .

Def. 2.3 An algebra A of type D is a heterogeneous algebra

[{VDIjDECA'I; irIaElca}I,
such that

(i) for every defining type D' C A, V1,) is the value set of D' defined by a
model A' of D',

(ii) for every a C 9, f0 is a total function of the appropriate arity, i.e., if a has

D, x... xD n as its domain and D' as its range,8 then f has
VDI X ... X VD as its domain and VD, as its range, and

(iii) VID is the smallest set closed under finitely many applications of the
functions corresponding to the constructors of D, i.e.,

00
Vo = U V , where VO = 0 andj=0 D

V1 (v,... v) I for each oE tic such that

o'D x... xD---D,vC U V'ifDi = D,andv C V a ifD ;16D}.k=0 D

7. Recall that (D) is the set consisting of I) and all data types on which 1) depends.
8. L.e., ()I •Dn. I)') is the index ofa.

- 35 -

So, V. is the principal domain of A, fa is the interpretation in A of the operation name
a E 12. We do not require the interpretation f of a to be a deterministic function if a is

deterministic and f. to be a nondeterministic function when a is nondeterministic; the
reason for this will become clear in Subsections 2.2.5 and 2.2.6 on the behavioral

equivalence of type algebras and the definition of a data type respectively.

if any f in A is a nondeterministic function, then A is called a nondeterrninistic

type algebra; otherwise, if every 10 is deterministic, then A is called a delerministic type
algebra. Henceforth, in the context of an algebra A of type 1), by an operation a we mean.

its interpretation f. and by a value of D we mean an element of VD.
The property (iii) above is due to the requirement that 1) satisfies the minimality

property. For a constructor , if f is nondeterministic, then VD) is closed under f

assuming f. could return any possible result for an input. Once the value set corresponding

to each defining type D' is fixed, then obviously V) is uniquely determined by

I fa I a E Sc), and is nonempty, because tc is nonempty and has at least one basic
constructor (see Section 2.1).

2.2.2 Examples of Type Algebras

We discuss below a type algebra Asi of Set-Int. Asi is a natural model of Set-tnt

in the sense that its principal domain is the set of all finite sets of integers, and the

interpretations of its operations are defined in terms of the standard set operations [16].

Asi= [{ S, Z, B); { Nu, In, Re, Ila, Si, Ch }],

where B = { true, false }, a value set of Boo),
Z = 10,1,-1, 2,-2, ... }, a value set of tnt, and

S = 10,101, 11}, 1-1,1 42). 1-2), 10, 11, 10, -11, 10, 2},

10 ,-2}, 11,-11, 41, 2, ... }, the domain corresponding to Set-Int.

The domains Z and B are defined elsewhere by th'e models of int and Bool, respectively.

The first two letters of an operation name are used to denote in AM the total

function corresponding to the operation. These functions are defined below. We will use

any convenient mathematical formalism to give the definitions of the functions. We use

,A.

-36-

the symbol = as the definition symbol; the symbol *;' marks the beginning of a

comment in a definition, running until the end of the line.

Nu 1-- 0
In(s, i) s U fi)

Re(s, i) - s {i} ; - is the difference operator

I la(s,i) iEs

Si(s) - #(s) ;the cardinality ofthe set

('h(s) -0O ifs= 0

such that i E s, otherwise.

Ch is a nondeterministic total function: ifs is not 0, then { Ch(s) } = s.
We discuss another type algebra A of Set-lnt in which the set values are

represented as finite sequences of nonrepeating integers.

A' - , Z, B 1; { Nu', In', Re1, Ila', Si, Chi Il,

where SQ1 = <> , < .1>, <-1>, 2>, <-2>, , 1>, (0, -1>, (0, 2>, <0, -2>,
<1, 0%, <1, -1D, Q1, 2%, <1, -2%, <-1, 0%. <-I, D>, <-I, 2%, <-I, -2%,

(2, 0>, (2, 1>, ... ,. }, the domain corresponding to Set-lnt.

The set SQ' contains all finite sequences of integers not having multiple occurrences of the

same integer, for example, (0, 0>, (0, 1, -1. 1> are not in SQ'. Let s stand for an element of

SQ1. Sos = <i, i>,m 0;ifm = 0,thens = 0.

1 inn
,n'(, >), ... ,.I,i) >- i . 1<j<m =i

-i~ ...(s , D otherwise
Re'(0il, ... ,i, i) -i >¢',. ~)l., 3l1:j_< m, i~

i,..., 10) otherwise
iHal(s, i) - true 3 1 < j :5 m, i

lbe otherwise

Sil(s) - m

ch)(o, 1 >)- 0l m=0

I<j_<m>o.

- 37-

Chi is a nondeterininistic function; { Chl(<il,..., i>) } = i.. i } for m > 0.

2.2.3 Interpretation of Terms

A term is constructed using the operation names of types in (D)* and the typed

variables. It expresses a sequence of operations, so it forms a straight line program. The

interpretation of.a term in a type algebra is like the execution of such a program. The

interpretation of all terms characterizes the behavior of the algebra.

We assume that we have as many variables (possibly infinite) of every type

D'- (D) as needed.

De'. 2.4 A term of type D' (D)* is defined inductively as follows:

(i) A variable x of type D' is a term of type D',
(ii) if a is an operation of some type D" (D) such that its domain is

Di x ... x Dn and its range is D', then 'a(el, e)' is a term of type

D' if and only if each e, is a term of type Di C (D). I

If a term has no variables, it is called a ground term. A term of type Bool is called a boolean

term. When we wish to refer to the variables of e, we write e as e(x,) (or e(X)),

where the set { x, ... xn I (or X) consists of all variables in e. A subierm of a term that is

a variable is the term itself. The subterms of a term of the form ',(e1,..... ed' are (i) the

term '*(e, ... , e)' itself, (ii) all subterms of e1, . .. , e, and nothing else.

An interpretation of a ground term e in an algebra A of type D is obtained by

performing the sequence of operations expressed by e. A ground term e of type D' is

interpreted in A as follows: If e is a 0-ary operation name a, an interpretation of e is the

result of applying the interpretation of a in A. If e is' o(e., e),' an interpretation of e

is the result of applying the interpretation of a in A on the interpretations of e , e in

A. An interpretation of e is an element of V),. Since e may be constructed using

nondeterministic operation names, e can have many interpretations. Let e A stand for an

arbitrary interpretation of e in A.

For example, let us assume that the defining type lnt of Set-lnt has the

-38-

constructors 0, 1, 2, and 3, and that they have the standard interpretation in a model of Int.
Then e, = Insert(Insert(NuIl, 0), 1) and e2 = Choose(e) are ground tenrs of types Set-lnt

and lnt respectively. We have,

eA A i {0, 1}, and

e2 A = 0 or 1.

Since every operation name of a data type D' E (D) has a total function as its
interpretation in an algebra A of type D, we have

Prop. 2.1 Every ground term of type D' E (D)* has an interpretation in A. I

Furthermore, since every data type inder consideration has the minimality property, we

have

Prop. 2.2 Every value in VD is an interpretation of some ground term of type D.

Proof Straightforward, by induction on type algebras using the dependency relation. I

For a term e of type D' having variables, iLs interpretation is a function, which is
denoted by fe" If e has nondeterministic operation names, then fe is in general a
nondeterministic function. Let { x1, ... ,x } be the only variables in e and D be the type

of x,. Then fe has VD, x ... x VD n as its domain and VD' its range. If the variables

x.... . ,x in e are instantiated in A to be the values v,..., v respectively, from the

appropriate domains in A, then e(x ... , x) is said to be instantiated in A as

e [x/v 1 ... , x/v,], and can be interpreted in A. The assignment [x1/v1,.. . , x/v I is
called an A-instance of x1,.. . , xn and each v, is called an instance of x. (We will
abbreviate the assignment as [XIV I, where V stands for (v,..... v).) An interpretation of

e [XlI P in A, written as e [XI III A , is defined as follows:

(i) Ife is a variable x, then e [XI ,11lA = v, and
(ii) ife is ofthe form' o(ei e)', m > O,

then e [X/VII A e, [7X/11 A e.... eI X/VII A)

fe(M is e[X/I I A"
Interpreting a ground term or an instantiated term in A is thus like performing a

.... U- .. o .

- 39 -

computation; an interpretation is the result of the computation.

2.2.4 Observable Behavior

The behavior of a sequence of operations of a data type D, strictly speaking,

becomes externally observable if the sequence has an effect on the outside world, for

example, the seque.nce of operations ultimately results in some output on an 1/O device,

such as a line printer, CRT, etc. In this sense, the distinction between two values of D is

observable if and only if there exists a sequence of operations such that when applied on

the values separately, it returns distinguishable outputs on an I/O device. An output on an

I/O device can be considered as a sequence of characters, and we can have a predicate on

the outputs, resulting in the boolean constants T and F depending upon whether the two

given outputs are distinguishable or not. In this way, we can define the distinguishability of

the values of D using the distinguishability of the boolean constants. We stop at Bool. As

was stated earlier, we use the definition of Bool as the basis of our formalism. In fact, any

data type (or a collection of data types) whose values can be distinguished a priori (outside

the formalism) can be used as the basis. For instance, a data type directly supported in a

programming language whose values are distinguishable using the literal mechanism in the

programming language can be used.

We structure the above informal definition of distinguishability using the

dependency relation on data types. Instead of defining the distinguishability of the values

of D in terms of the distinguishability of boolean values in a single step, we do it

incrementally. We assume that the distinguishability relation is defined on the values of

every defining type D' E A, if any; in this way, the behavior of the values of D can be

incrementally observed through its observers. Except for Bool, if D does not have any

observers, i.e., its 11o is the empty set, then the values of D are not distinguishable, as there

is no way to tell whether any two values are different. That is why we remarked earlier that

every interesting data type must have at least one observer.

For a D with a nonempty set of observers, it is generally not sufficient to examine

the values of 0 directly by the observers due to the possible delayed effects of the

constructors. The distinguishability of the values may not manifest itself tntil some I

-40-

constructors are applied on them. For example, two different nonempty stacks of the data

type stack of integers may have the same integer as their top element, so they cannot be

distinguished directly by the observer Top. But if we apply the Pop operation first on the

two stacks, then the resulting stacks may be directly distinguishable by the observer Top

thus exhibiting that the original stacks are also distinguishable. There is generally a need to

perform a sequence of operations with an observer of D as the last operation in the

sequence, to distinguish two values of D.

Informally, two values of D are distinguishable if and only if either

(i) there is a sequence of deterministic operations of D such that when it is applied on

the two values assuming every other argument of the sequence fixed, it results in

distinguishable values of some defining type D' E A, or

(ii) there is a sequence including nondeterministic operations such that the result of

applying it on a value for some choice made by the nondeterministic operations is

distinguishable from the result of applying it on the other value no matter what choice is

made by the nondeterministic operations.

If two values are not distinguishable, they are called observably equivalent. For better

exposition, we have deliberately structured the definition of distinguishability into two

cases, though the second case can be modified to cover the first case. The second case may

appear to be a very strong requirement, but a small amount of thinking should convince

the reader that such is not the case, as we definitely do not want a value to be

distinguishable from itself. Furthermore, observable equivalence should be an equivalence

relation and it must be preserved by the operations of the data type. We precisely state

below these requirements in the context of a type algebra and illustrate them using

examples.

The operations of a data type must also preserve the observable equivalence

relation on the values of every defining type in the sense that the operations cannot

distinguish among the observably equivalent values of a defining type. This requirement

on the operation behavior is necessary because of the modular structure of data types. A

new data type should not impose any additional structure on the values of any of its

defining data types. This property of a data type is guaranteed in all programming

-41-

languages supporting an abstract data type mechanism in which an implementation of a

data type is hierarchically structured and the representation is hidden from the users of a

data type.

We would like the type algebras to have the above properties. Definition 2.3 of a

type algebra does not guarantee them, so we put an additional constraint on a type algebra.

We first define the observable equivalence relation ED on the principal domain VD of a

type algebra A; we will assume that die observable equivalence relation ED, on V1), in A is

defined for each D' E A by a model A' of D' having V,) as its principal domain. We show.

that ED as defined below is an equivalence relation. Later we define a well formed type

algebra whose functions preserve the set E = El) , I D'E A' } of observable equivalence

relations. Only the well formed type algebras are of interest for defining a data type.

In the above discussion, we have only considered the input-output behavior of the

operations for distinguishing different values. We have not considered the efficiency of the

operations. In case of nondeterministic operations, we have not considered how possible

values that a nondeterministic operation can return on a particular input are scheduled.

Our formalism is limited in this sense.

2.2.4.1 Definitions of Observable Equivalence and Distinguishability

We give the basis and the inductive parts of the inductive definition of the

distinguishability relation. The basis part is the case when D does not have any defining

type and the inductive part is the case when D has defining types. In the basis part, there

are two subcases: (i) D is Bool, and (ii) D is different from Bool. We first define the data

type Bool and then define the distinguishability relation on the models of Bool.

The data type Bool does not have any defining types and is self-contained. We

present below a model of Bool and call it B.

B = ({ { true, false } }; 1 T, F, V, -, A, =, }), where

T -A true

F 4 false

Strue -- false

-42-

N false - true

true V true - true

true V false - true

false V true - true

false V false 4 false

xAy ~((~x)V(~y))
x=*y (~x)vy

x"y A (~ (xVy))V(xAy)

The interpretation of T is the logical value true and the interpretation of F is the logical

value false.

Def. 2.5 The data type Bool is the set of all type algebras isomorphic to B. I

We will often use B as if it is the only model of Bool, and interchange between T and its

interpretation true in B as well as between F and its interpretation false. We assume that

the boolean constants T and F are distinguishable from each other a priori, meaning that

their interpretation in every model of Bool is distinguishable. Each boolean constant is

observably equivalent to itself.

Def. 2.6.1 Let A be a model of Bool and V..o be the value set of Bool defined by A. The

observable equivalence relation on V..o is defined to be the identity relation on VBool

The distinguishability relation on V.00l is defined to be the complement of the observable

equivalence relation with respect to the universal relation on V.., (i.e., VBoo x V).

The other component of the basis part of the definition of distinguishability is

now given.

Def. 2.6.2 For any data type D other than Bool not having any defining type, no value in

V9 of an algebra A of type D is distinguishable from any other value in VD .

The inductive part is as follows:

-43-

Def. 2.6.3 Two values v, and v2 in VD of a type algebra A are distinguishable iff there is a

tenn of type D' with exactly one variable of type D, expressed as c (x), such that the
instantiation c [x/v 1] interprets in A to a value of a type D' E A (an element of V.) that is
distinguishable from every possible value to which the instantiation c[x/v2J interprets, or

vice versa. I

The case 2.6.2 above can be derived from the case 2.6.3.

Def. 2.7 vi and v2 are observably equivalent, i.e., (v1. v2) E Ej) iff v, and v2 are not

distinguishable. I

It should also be obvious from the above definitions that if D does not have any observers

and D is different from Bool, then all members of VD are observably equivalent. The

following definitions are useful in dealing with data types having nondeterministic

operations.

Def. 2.8 Given two subsets A, and A2 of VD A, is observably equivalent to A2 and vice

versa, iff(V v, E A,) (3 v2 E A2) [<v, v2> E ED], and vice versa I

Def. 2.9 A, and A2 are distinguishable iff Al and A2 are not observably equivalent I

Then the case 2.6.3 can be rephrased as:

Y, and v2 are distinguishable iff there is a term c(x) such that { c x/vJ A } is
distinguishable from { cjx/v2 11 A b

Consider the type algebra AM of Set-Int (see Subsection 2.2.2). It can be proved

using the definition of nt that the observable equivalence relation on Z, the value set of nt

used in A. , is the identity relation. Then the sets {) and {01 are distinguishable since the

term Size(x) distinguishes them. The sets {0, 11 and 41, 21 are also distinguishable since

the term Choose(x) distinguishes them: An interpretation ofChoose(10, 1)) is either 0 or 1,

and if 0 is chosen as an interpretation, there is no interpretation of Choose(I 1, 21) returning

0. By similar reasoning, 40, 11 is also distinguishable from 40). 40, 11 is observably

equivalent to itself. The observable equivalence relation on the principal domain of AM1 is

the identity relation. However, it can be shown that the observable equivalence relation on

-44-

the principal domain of As is not the identity relation, because for example, (1, 2> is

observably equivalent to (2, 1>. In fact, any two sequences having the same set of integers
are observably equivalent. In A 1

E, = <sl, s2> I sl is a permutation of s2 }.

Thin. 2.1 The observable equivalence relation E) is an equivalence relation.

Proof That E D is reflexive and symmetric is obvious from the definition. The transitivity

of ED can be shown by induction on type algebras using the dependency relation. I

The requirement that the functions in a well fonned type algebra A preserve the

observable equivalence relation E D for each D' E A' is equivalent to requiring that

E = I El), I D'E A' } be a congruence on A., where a congruence on a heterogeneous

algebra is defined in Appendix 11.

Def. 2.10 A type algebra A is well formed if and only if E isa congruence on A. I

Since we are interested only in well formed type algebras, by a type algebra we henceforth

mean a well formed type algebra unless stated otherwise.

For example, both A and A I are well formed. El = { Eslnt, EIntEI3 ol}

in case of Ali , where E, t and EBool are the identity relation, is a congruence on A'

Thin. 2.2 Assuming that E BW1 is the largest congruence on a model of Bool, E is the

largest congruence on A.

Proof See Appendix II. I

The above theorem implies that the observable equivalence relations on the domains in A

completely extract its observable behavior in the sense that in the quotient algebra A/E

induced by E on A, every value is distinguishable from each other.

Si -45-

2.2.4.2 Reduced Algebras

It is technically cumbersome to deal with a type algebra having distinct but

observably equivalent values, so we introduce the notion of a reduced algebra.

Def. 2.11 An algebra A of type D is called reduced if and only if for each D' E A', E,), is the

identity relation. I

So all members in every domain of. a reduced type algebra are distinguishable. For

example, A,1 is reduced, whereas A1. is not. B, the model of Bool, is also reduced.

Given an algebra A, we can get its reduced algebra by taking the quotient of A

w.r.t. E = I EI), I D A'), since E is a congruence on A. The reduced algebra

corresponding to A is

A/E = [1{ V,/E), I D' E A' } ; { ga la } , Iwhere
g.([V'j.... [v]) = f-(v 1 v) .

The principal domain of the reduced algebra corresponding to an algebra of D having no

observers, where D is not Bool, will have a single element. The reduced algeUra

corresponding to A'1 has as its principal domain

SQ/SetI.nt = I { > 1, I (1> 1 1 <-1> 1, 1 <2> 1, { <-2> },
I < 0 , 1 > , < 1 , > , 1 < 0 , -1 > , < - , > , 1

2.2.5 Behavioral Equivalence of Type Algebras

As was stated at the beginning of this section, in order to abstract the observable

behavior of a type algebra, we must abstract from (i) multiple representations of the values

of a data type in the type algebra as well as from (ii) different representational structures

used for the values in different type algebras. The observable equivalence relation

discussed above does the first task. It identifies representations having the same observable

behavior. For the second task, we employ the standard algebraic concept of isomorphism.

9. It can be easily shown that A/E is also a type algebra.

-46-

By combining the two, we define the behavioral equivalence relation on type algebras as

follows:

Def. 2.12 Type algebras Al and A2 are behaviorally equivalent if and only if the reduced

algebra corresponding to A1 is isomorphically equivalent to the reduced algebra

corresponding to A2*

We later show that the above definition indeed captures the desired intuition that

two behaviorally equivalent algebras have the same observable behavior. By this, we mean

that an interpretation of a ground term e in one algebra behaves the same way as an

interpretation of e in the other algebra, when manipulated by the operations. (Informally

speaking, a computation results in equivalent values in two related type algebras.)

The isomorphic equivalence of two type algebras is stronger than the

isomorphism of the two type algebras if considered as they are. If D does not have any

defining type, then isomorphic equivalence is the same as the isomorphism. However, if

two type algebras are considered in the expanded form in which they have a domain

corresponding to every data type D" E (D) and a function corresponding to every

operation of D", then isomorphic equivalence is same as isomorphism. Since we do not

wish to carry all this information in a type algebra and consider a type algebra in the

expanded form, we assume that for each D' in A. the models of D' defining V1), and V2 , as

the value sets of D' are isomorphically equivalent and there is a bijection 4'1' from V , to

V 2 ,defined by the isomorphic equivalence relation. We thus do not use any arbitrary

bijection from V 1, in A to V 2, in A2 to show isomorphic equivalence between A and A

Instead, we build the bijections bottom up establishing correspondence between the values

in the two algebras. T-he set { 4b I D' E A } induces a bijection e0) from V 1 to V2 so that

S= {), I D'E A'] is an isomorphism from A, to A2.

-47-

Def. 2.13 Given two type algebras A, and A2 such that for each D' E A, the models

defining V1 and V 2, as the value sets of D' are isomorphically equivalent, which defines a

bijection *b : V,-- V',, A and A are isomorphicaly equivaleni if and only if there is a

bijection 4, from V to V such that = 4 oU I D' E A' } is an isomorphism from A, to

A. I

Note that both A, and A2 above are either deterministic or the corresponding functions in

A, and A2 have the same amount of nondeterminism.

For examples, the models of Bool are isomorphically equivalent. The type

algebras A and A' of Set-lot are behaviorally equivalent because A and A' /E are

isomorphically equivalent. We can define three other type algebras of Set-nt which are
2 3 an

similar to A . The type algebras AI , A ,and As have sets represented by finite
SiITetp lers SI Si

ordered sequences of nonrepeating integers, finite ordered sequences of repeating integers,

and finite (unordered) sequences of repeating integers respectively; the definitions of

various functions are appropriately given. It can be shown that the type algebras A.1,

Ali A , A3, and A4 are behaviorally equivalent.urn' si'u
Note that two behaviorally equivalent type algebras need not have the same

amount of nondeterminism. In fact, one could be deterministic whereas the other could be

nondeterministic because the possible results returned by a nondeterministic function on

an input in such a nondeterministic algebra are observably equivalent

From the definitions of isomorphic equivalence and behavioral equivalence, we

have the following:

Thin. 2.3 A, is isomorphically equivalent to A2 * A, is behaviorally equivalent to Ar

Proof Assume A, and A2 are isomorphically equivalent. Let E, and E2 be the sets of

observable equivalence relations on A, and A2 respectively. Then, A,/E, and A2/E 2 can be

shown to be isomorphically equivalent. (By Theorem 2.2, E, is the largest congruence on

A, and E2 is the largest congruence on A2.) So, Al and A2are behaviorally equivalent. I

-48-

Thin. 2.4 The behavioral equivalence relation on type algebras is an equivalence relation.

Proof The reflexivity and symmetry property are obvious from the definition. The

transitivity can be proved from the fact that composition of two isomorphisms is also an

isomorphism. I

The behavioral equivalence of type algebras Al and A2 can be expressed as

'I,

A1 - - - - - - - - - -. > ----- A2
I I
I I
I I

H, Y
I I
I I

A]IE i I > -------- A21/E 2

such that the above diagram commutes, i.e.,

o. 1 1. (=H)

(The function f. g has the same behavior as applying g first and then applying f on the

result.) El and E2 are congruences consisting of observable equivalence relations on A, and

A2 respectively; A1/E l and A2/E2 are the reduced algebras corresponding to A, and A2

respectively: and, b is the isomorphism defined by the isomorphic equivalence of Ai/Ei

and A2/E 2 . H and H2 are the homomorphisms induced by the congruences El on Al and

E2 on A2 respectively. The equation (t) defines the set *, of many to many mappings

{ *'' -V-V,I D' E A U { D } relating A1 and A2. In Appendix II, we discuss for two

behaviorally equivalent type algebras Al and A2, how a many to many mapping

VI -, V2 can be constructed from the set of many to many mappings { ,Pi. I D' E A },

where for each D' E A, Ii), is a many to many mapping from V 1, to V2, defined by

behaviorally equivalent models A' and A; of D' defining V 1, and V2 - respectively. We

also show that the above definition of behavioral equivalence indeed captures the desired

property that the set of interpretations of a ground term are 'equivalent' in behaviorally

equivalent type algebras.

-49-

Thin. 2.5 For behaviorally equivalent algebras A, and A2' for every ground term e of type

D" E (D)*, for every v E I el Al }, there is a v' E { el A2 } such that < [v ,v']> E 4D" ,and

vice versa.

Proof See Appendix II. I

The following theorem expresses that the distinguishability and observable

equivalence of ground terms are invariant over behaviorally equivalent type algebras.

Thin. 2.6 For behaviorally equivalent A1 and A2, for any ground terms e and e2 of type

D",ieIAlI = {[e,1llA1 { {[ellA2 1 1 = {[e,1A2 1.

Proof See Appendix 1I. I

{ [... } stands for a set of equivalence classes.

2.2.6 Definition of a Data Type

The behavioral equivalence relation on type algebras abstracts their observable

behavior as shown above and captures the meaning of a data type.

Def. 2.14 A data type D is an equivalence class of algebras of type D defined by the

behavioral equivalence relation. I

Let MD stand for the set of all behaviorally equivalent algebras of type D. Every

A in M. is called a model of D as we have captured the semantics of the operations of D.

The principal domain of a model A defines a value set of D. If a model in D is a reduced

algebra, then it is called a reduced model. Since isomorphically equivalent algebras have

the same amount of nondeterminism, all reduced models of D are either deterministic or all

are nondeterministic (see p. 47). If a reduced model in D is nondeterministic, then the

interpretation of an operation in every reduced model has, informally speaking, the same

amount of nondeterminism. When we wish to present a data type D, we will do so by

presenting an element of M) as the representative of M). We call this model the

dcnoiation of D. We often use a reduced model as the denotation of a data type.

We can order algebras in MD using the onto homomorphism relation. Given two

- 50-

algebras A, and A2 E MD, <Al A 2 if and only if A, is an onto homomorphic image of A2,

when A, and A2 are considered in their expanded form. The relation < can be shown to be

a partial order. A reduced model A of D is the least model in MD upto isomorphic

equivalence. It is also called final in MD because there is a onto homomorphism fromDI
every model A' of D in M)D to A as depicted in the following diagram.

A'

H' H'

A'/E'-->--- A

Def. 2.15 Set-nt is the set of all algebras behaviorally equivalent to Asi. I
A1 2 3 , n 4

So, As, A' Al i A , sandA are models of Set-Int. It can be verified that all
Si Si Si Si

models of Bool are behaviorally equivalent type algebras of Bool. We will use B as the

denotation of Bool and Asi as the denotation of Set-'nt. i

It should be clear from the above definition that a data type D not having any

observers consists of all type algebras of D. This is so because the definition of behavioral

equivalence of type algebras depends only on the behavior of the observers.

We now compare our definition of a data type with those of Zilles [77] and the

ADJ group [23]. They require a data type to be a set of all isomorphic (isomorphically

equivalent to be exact) type algebras, which abstracts only the representation details from

the algebras. (1hey assume that a data type has only deterministic operations). In their

approach, a data type whose models are the reduced algebras is distinct from another data

type whose models have distinct observably equivalent values even though both data types

have the same observable behavior. For example, the data type consisting of models

isomorphically equivalent to Asi would be different from the data type consisting of

models isomorphically equivalent to A' From a programmer's point of view, both the

data types are the same and cannot be distinguished. We do not understand the motivation

for making the above distinction. Our definition of a data type is stronger than theirs, and

it does not make the above distinction. It not only abstracts from the representations of the

-51-

values in a type algebra, but it also considers representations to be distinguishable only if

they can be distinguished by the operations. It is based on the programming language view

of a data type.

2.2.7 Observable Equivalence and Distinguishability of Terms

Since every value in the value set V1) defined by a model A of D is an

interpretation of some ground term of type D, the observable equivalence relation and

distinguishability relation on VD induce the observable equivalence relation and

distinguishability relation on the ground terms of type D as follows:

Two ground terms e, and e2 of type D are observably equivalent w.r.t. A if and only if the

possible interpretations of e in A are observably equivalent to the possible interpretations of

e2 in A. And, eI and e2 are distinguishable w.r.t. A iff they are not observably equivalent

w.r.t. A.

For example, the ground terms Insert(Insert(Null, 2), 3) and Insert(Insert(Null, 1), 2) of

type Set-nt are distinguishable w.r.t. Asi, as their interpretations {2, 31 and {1, 2} in A

are distinguishable, whereas Insert(Jnsert(Null, 2), 3) and Insert(Insert(Null, 3), 2) are

observably equivalent w.r.t. A. , because they have the same interpretation in AM The

observable equivalence and distinguishability relations on grounu terms of D w.r.t. A have

the properties of the observable equivalence and distinguishability relations on VD in A;

remarks and observations made in Subsection 2.2.4 hold for them also.

Using the fact that all models of D are behaviorally equivalent and Theorem 2.6,

it can be shown that every model of D induces the same obsern able equivalence relation on

the ground terms of D. So we can say that the above relations are independent of a model

and are relations on ground terms of D. We can use a reduced model to derive the

observable equivalence relation on the ground terms of D.

Distinguishability and observable equivalence of the ground terms of D are useful

in understanding the behavior of D. These ielations characterize the behavior of D in the

same way as these relations on the values of a type algebra characterize the behavior of the

type algebra. Distinguishability captures the informal notion of the ground terms being

52 -

unequal. The models of a data type also induce observable equivalence and

distinguishability relations on ground terms of type D' E A involving the operations of D in

the same way as above. Understanding of the observable equivalence relation on the

ground terms is helpful in writing a specification of a data type, as discussed in the next

chapter. A specification of a data type can be viewed as a way to describe the observable

* equivalence relations on ground terms.

We can also define the observable equivalence relation on terms (possibly

involving variables) as follows:

Given terms e, and e2 of type D' E A', let X be the set of variables in el and e2; e, and e2

are observably equivaleni if and only if for some A E MD, for every A-instance V of X, the

possible interpretations of e[X/VJ in A are observably equivalent to the possible

interpretations of e2[X/VI in A. And, el and e2 are dislinguishable if and only if they are not

observably equivalent.

j

-53-

2.3 Exceptional Behavior of a Data Type

So far we have assumed that every operation of a data type D returns a normal

value of its range type for any input in its domain. This assumption is not realistic, as it

glosses over an important component of the behavior of a data type. In this section, we

discuss the exceptional behavior of a data type. We relax the constraint that every

operation terminates normally: An operation can terminate either normally by retulrning a

value or by signalling an exception. For example, we modify the behavior of the operation

Choose on the empty set, henceforth, we assume that it signals an exception instead of

returning the integer 0. We discuss the assumptions made in the formalism about the

behavior of the exception hanidling mechanism of a host programming language supporting

the abstract data type mechanism. We extend the formalism introduced in the previous

section to model the exceptional behavior.

2.3.1 Assumptions about Exception Handling Mechanism

We consider the exception handling mechanism an integral component of a host

programming language supporting the data type facility. The exception handling

mechanism performs two functions: Signalling the exceptions and handling the exceptions

1521. Signalling is the way a program notifies its caller of an exceptional condition, and

handling is the way the caller responds to such a notification. A module implementing a

data type must provide an adequate interface with the rest of the programming language

for exception handling. Stich an interface can be designed by naming the exceptions

signalled by the operations along with the specification of information carried as arguments

to the exceplon handlers We will not be concerned with the semnantics of the exceptional

handling mechanism oIf a programming language in this thesis-, we rather consider the

exceptional handling mechanism insofar as it interacts with the data type mechanism.

Liskov and Snyder 1501 discuss two models Of Structured exception handling - the

resumiplon model and the iermination mnodel. In the resumption model, it is possible to

resume the operation invocation signalling an exception after the exception has been

handled. In the termination model, the operation invocation is assumed to be completed

"1 -54-

once it signals an exception. Liskov and Snyder describe many advantages of the

termination model over the resumption model. In particular, the behavior of the handlersI for the exceptions signalled by an operation is separated from the behavior of the operation
in thle termination model approach; this maintains the modular structure of the operations.

In the resumption model, on the other hand, the behavior of the handlers becomes a part of

the operation behavior. Though there is not sufficient experience to suggest which among

the two models is better suited for abstract data types, we have decided to adopt the

*1 termination model approach because of its simplicity.

In a language Supporting call-by-name argument passing mechanism (or in fact,

any mechanism in which the argument evaluation takes place inside the procedure body), it

is possible to implement a data type whose operations can handle the exceptions signalled

by the evaluation of their arguments. Few recently designed programming languages

support Such an argument passing mechanism for at least two reasons: (i) Its semantics is

quite complex, and (ii) it is inefficient to implement. Most programming languages

support call-by-value, call-by-object (521, or call-by-reference mechanism; with these

mechanisms, it is not possible to implement a data type having an operation that handles

exceptions signalled by the evaluation of its arguments. We assume in our work that an

operation does not handle any exception signalled by the evaluation of its arguments,

rather such exceptions are handled in a module in which the operation is invoked, as

arguments are evaluated inside this module. Every operation is assumed to expect normal

values as arguments.10

If an operation takes multiple arguments, many arguments may signal exceptions.

The order in which the exceptions are signalled and handled depends upon the evaluation

order of the arguments of a procedure invocation in the host programming language;, we do

not address this issue in the thesis. We would like our formalism to be compatible with any

reasonable ordering scheme adopted in the host programming language.

10. However, our approach for defining a data type is general and flexible enough to model a data type
having operations that handle exceptions signalled by its arguments. We simply have to extend the formalism
proposed in this section. A data type with such behavior can also be specified by extending the specification
language co be proposed in die next chapter.

-55.

j We adopt CLU's view of a data type that the handlers associated with the
exceptions signalled by the operations of a data type are not a part of the data type. This

view keeps the behavior of the handlers separate from the type behavior and maintains the

modular structure of the type mechanism. A user of a data type has the flexibility of

associating different handlers for an exception in different contexts. We will not discuss

the behavior of the handlers in our research.

Exceptions signalled by the operations are distinguished by naming them. An

exception can carry information as its arguments from ihe place where the exception is

signalled, and this information can be used by a handler associated with the signalled

exception. An operation can signal many exceptions to exhibit different properties of an

input

For illustration, we consider the data type bounded stack of iniegers, of size < 100,

denoted by Stk-lnt-100. Stk-int-100 is an instantiation of the parainelerized stack example

in [31]; it has the following operations:

Null a constant denoting the empty stack of integers.

Push inserts a given integer i at the end of a given stack s. It signals the exception
overflow(s, i) if the given stack is of size > 100. A handler for overflow may examine
the stack and remove the useless elements to make space for the new element, or it

may do something else.
Pop removes the last integer inserted into a given nonempty stack s. When invoked on the

empty stack, it returns the empty stack back.

Top returns the last integer inserted into a given nonempty stack s. It signals the exception

no-topO if s is empty. No-top does not take any argument.

Replace replaces the last integer inserted into a given nonempty stack s by a given integer i. It

signals the exception can't-replace(i) on the empty stack.

Empty tests whether a given stack is empty or not.

For Stk-lnl- O0, A = B Int, Bool I and = { Null, Push, Pop, Top, Replace, Empty }.

-7-=

-56-

2.3.2 Formalism

We discuss extensions of the formalism introduced in the previous section to

model the exceptional behavior of the operations. We discuss modifications to the

definitions and their implications. Some important definitions will be fully presented. The

discussion and results of Section 2.2 are applicable once these modifications are

incorporated.

We first extend the definition of a type algebra given in Subsection 2.2.1. We

want to keep the normal values of every data type separate from the exceptions, because

the exceptions have totally different behavior as compared to the normal values, and

because the exceptions should not be typed. In addition to a domain corresponding to

every D' E A' containing the normal values of D', a modified type algebra has a new domain

of exceptions denoted as EXV. EXV consists of all exceptions (or exceplion values)

signalled by the operations of D" E (D), where for every exception name ex of arity

Di x ... x D , and each v, of type D,, ex(v ..., vn) is called an exception value. The

exception domain EXV in a type.algebra A of D is specified incrementally. EXV in A

inherits the exception domain of a model A' of D' E A whose principal domain VD is being

used in A. The exception values signalled by the functions interpreting the operations of D

are explicitly specified. Let exv stand for an exception value ex(v, ..., v). If an operation or

signals, this is modeled as its interpretation fa returning an element of EXV.
We now present the modified type algebra:

Def. 2.16 An algebra A of type D is a heterogeneous algebra

{W I D'E A' 1, EXV, I faEI a} Jwhere

(i) for every defining type D' E A, V) is a value set of D' defined by a model

of D'. V,), consists only of the normal values returned by the constructors

of D',

(ii) EXV is the exception domain including the exception domain of a model
of D' defining VD, for each D' E A, and the exception values signalled by

the operations of D,

-57-

(iii) for every a E u, its interpretation f is a total function of",e appropriate

arity. If D' is the range of a, rf either results in a normal value in V D' or

returns an exception value. If any argument to f is in EXV, f is not

defined on these arguments,11 and

(iv) VD is the smallest set closed under finitely many applications of the

functions corresponding to the constructors of D (i.e., I f a J E c)" VD

only contains the normal values resulting from the constructors. I

Recall that by assumption, even if f is nondeterministic, it behaves deterministically on an

input on which it signals. We assume that for every D' E A', it is possible to distinguish the

normal values from the exceptions; this assumption is implicit in every programming

language supporting exception handling.

2.3.2.1 Terms, Exception Terms, and Interpretations

In addition to terms as defined in Subsection 2.2.3, we have exception terms

defined as follows.

Def. 2.17 For every exception name ex of arity D1 x ... x D, ex(e, ... e) is an

exception term if each e is a term of type Di.I

An exception term not having any variables is called a ground exception term.

An interpretation of a ground term e in a type algebra A is not defined if any of

its subterms interprets to an exception value. So, Proposition 2.1 in Subsection 2.2.3 gets

modified to

lI. An equivalent interpretation is to have f., signal a distinguished exception value, say alortO for example.

We have not chosen this interpretation because it gives the impression of the exception value being passed as
an argument to the operation. If we wish to model a data type with an operation handling exceptions
signalled by the evaluation of its arguments, we cannot make the above assumption. An operation a could
return normal values even when its arguments signal exceptions, so r. could return a normal value in that
cas.

-58-

Prop. 2.3 An interpretation of a ground term of type D" E (D) in an algebra A of type D

is either a normal value, an exception value, or undefined. I

If an interpretation of e is an exception value or is undefined, then e has a unique

interpretation in A. An interpretation of an instantiated term as well as a term in A are

similarly defined. Proposition 2.2 in Subsection 2.2.3 directly extends to a modified type

algebra.

An interpretation of an exception ground term e.4e,, ..., e) in A is defined only if

ea is a normal value of type D,; then, e e, ..., e)A A = exell A ..., e A)-

Otherwise, ex(e ..., e) A is undefined. The definition of an interpretation of an

instantiated exception term and of an exception term in A can be given using the above

definitions.

2.3.2.2 Examples of Modified Type Algebras

The type algebras A and A'. of Set-int given in Subsection 2.2.2 are modified
Si si

to incorporate the exceptions. We will use the symbols As1 and A's to stand for the

modified type algebras.

Asi = [{ S, Z, B 1, EXV; { Nu, In, Re, Ha, Si, Ch I,

The Choose operation signals the exception no-element, which is included in EXV; so

Ch(0) A no-elemento,

instead of 0. Otherwise, the definitions of the functions remain the same. Similarly, for

Ali , wehave.
SI

1 = [SQ' , Z, B }, EXV; { Nu', In', Re', Ha', SiO, Ch' } J,
where Chl((>) 1- no-element(), and the definitions of other functions remain the same.

We present a type algebra Astk of Stk-lnt-100.

Astk = Il SQ', Z, B , EXV; I Nu, Pu, Po, To, Re, Em I
where Z and B are the value sets defined by the models of It and Bool respectively. And,

SQ' is the set of all sequences of integers of length 5 100.

SQ = <>, <0>, <1>, <-1>, <2>, <-2>, (0, 0>, (0. 1>, (0, -1>

The interpretations of the operation names are defined as follows:

-59-

Nu 0 >

PU(<ii,...,i>, i) overflow(,...,im>,i) ifm > 100

C >,-,0r...' ,i> otherwise
po(%**,...,>) A__ :<>ifm =)

(<i..., im.l> otherwise
To(<ii,...,i>) _ no-top() ifm = 0

(i otherwise

Re(C/1 ... , i) can't-replace(i) ifm = 0

i'- i> otherwise

Emn(<i,...,i>) T ifm = 0

IF otherwise.

Henceforth, by a type algebra, we mean a modified type algebra unless stated otherwise.

2.3.2.3 Observable Behavior and Distinguishability

The definition of Bool given in Subsection 2.2.4 remains the same, because no

boolean operation signals.

As was stated earlier, if the operations of a data type exhibit exceptional behavior,

its values can also be distinguished due to its exceptional behavior. If a sequence of

operations signals an exception on one value and does not signal on the other, then the two

values are distinguishable. If a sequence of operations signals on both values, the two

values are distinguishable if the sequence signals different exceptions. Thus the behavior

of the values of a data type can also be observed using the exception handling mechanism

of the host programming language. Even if a data type does not have any defining types,

its values can be distinguished if its operations signal exceptions.

We define the distinguishability relation on VD and the distinguishability relation

on the exception domain EXV in A mutually recursively, using the distinguishability

relations on the domains corresponding to the defining types. It should be made sure that

arguments to exception names are such that the two definitions are well founded. The

definition of distinguishability on exception values incorporates that (i) two exceptions

~~~~~~7 ' ~M 'I~~~-



-60-

having different names are distinguishable, and (ii) two exceptions having the same name

but distinguishable arguments are distinguishable.

Der 2.18 Given two exception values exl(v. v) and ex2(v;,...., v') in EXV, they are

distinguishable iff (i) ex1 ;k ex 2 , or (ii) if ex = ex2 and m = n, then for some I < i < m, vi

is distinguishable from V. Two exception values are observably equivalent iff they are not

distinguishable. I

We denote the observable equivalence relation on EXV by EEXv-

Def. 2.19 For an algebra A of type D having no defining types and whose operations do

not signal, all values in VD are observably equivalent. I

Def 2.20 Two normal values v, and v2 in VD of an algebra A of type D are distinguishable

iff there exists a tenn with one variable of type D, expressed as c (x), such that one of the

following conditions holds:

(i) the instantiated terms c[x/vlJ and c [x/v 2] interpret to distinguishable
exception values in A,

(ii) c Ix/vii interprets to a normal value and c [x/v 2] interprets to an
exception value or vice versa, and

(iii) c[x/vi]IA and c Ix/v211 A are normal values and { c [xlv ]A I is
distinguishable from { c [x/v2IIA }. 1

Note that in the above definition of distinguishability, we have not included the case in

which exactly one of clx/vl] and cjx/v2] is not defined because the condition (ii) above

takes care of it.

Def. 2.21 Two normal values v, and v2 are observably equivalent iff they are not

distinguishable. I

Theorem 2.1 of Subsection 2.2.4 extends to the above definition of observable

equivalence relation. EEXV is also an equivalence relation.

We extend the definitions of congruence, homomorphism, and isomorphism for



- 61 -

type algebras having exception domains. The mappings from the normal domains of a type

algebra A, to the corresponding normal domains of another type algebra A2 induce a

mapping bEXV from the exception domain EXVI in Afto the exception domain EXV 2 in

A2. The exception names act like operations; they preserve these mappings. Given

A1 = [{ V, I D' C A' 1, EXV 1 I fl Io C 0. D

A2 = [{ V2 ,I D' C A'}, EXV 2 " { f2 IE }]'

for every exception name ex of arity D, x ... x D.

< ex(vl ..., vn), ex(qo(1) (V 1..... ) (v))> C "EXV

Theorem 2.2 modified to say that E = { Ely I D' C A' } U { EEX\, } is the largest

congruence in A holds; the proof is similar to the proof of Theorem 2.2. E captures the

normal as well as the exceptional behavior of the functions of a type algebra A.

We define a reduced algebra in the same way as in Subsection 2.2.4 using the

congruence E. The definition of behavioral equivalence relation on type algebras is the

same as in Subsection 2.2.5. The definition of isomorphic equivalence used in the

definition of behavioral equivalence is extended by including the mapping 4EXV in the

family ,0 and requiring OEXV also to be a bijection. The theorems of Subsection 2.2.5

exhibiting that the definition of behavioral equivalence of unmodified type algebras indeed

captures the desired intuition extend to the modified type algebras. The results and proofs

are modified to incorporate the fact a ground term e (respectively, an instantiated term

e[X/P) may interpret to a normal value, an exception value, or be undefined (see

Appendix II).

A data type D is defined in the same way as in Subsection 2.2.6 as a set of

behaviorally equivalent type algebras. Let MD stand for this set. Every model in M D now

has the exception domain EXV. The observable equivalence and distinguishability

relations on the ground terms of type D are defined as ir Subsection 2.2.7. We incorporate

the facts that two ground terms whose interpretation in every model in M) are undefined,

are observably equivalent, and that if one of the ground terms has an undefined

interpretation whereas the other does not, then the two ground terms are distinguishable.

.. ... . .. .. .. -u.. . .



- 62 -

2.3.2.4 Comparison with Goguen's Approach

Our approach is similar to Goguen's approach [20, 211 of modeling the

exceptional behavior of a data type in the sense that exceptions are named and can have

arguments. However, there are crucial differences in the two design philosophies. In

Goguen's approach, the definition of a new data type can possibly extend the definitions of

its defining types. This is so because the exceptions (called not-ok values in [20]) are typed

just like the normal values (called ok values in [201). Instead of having a single domain of

exceptions, Goguen partitions a value set of D into the exception values and the normal

values; the exception value part of the value set expands as new types using D are defined.

For example, the definition of Sik-Int-Q0 would extend the definition of lnt by defining a

new integer no-top (which is a not-ok value). We consider this as violating the modular

structure of the definitions.

The OBJ language of GogUen and Tardo [21] allows the handlers for the

exceptions signalled by the operations to be specified as a part of the type specification,

thus making the type behavior complex. We suspecz that they adopt this approach because

of their attempt to develop the algebraic semantics of a complete programming language

including the control structures. So, they do not separate the semantics of the exception

handling mechanism from the data type.

In contrast, we have concentrated on the behavior of data types only. We have

separated the exception handling mechanism from the data type mechanism. We have

only considered components of the exception handling mechanism related to the type

definition mechanism. We do not consider the behavior of exception handlers as a part of

a data type for reasons discussed earlier. We believe that the type mechanism should only

provide an adequate interface to the exception handling mechanism of the host

programming language. We separate the exception domain from the domain of normal

values as exceptions have different behavior from the normal values. We do not type

exceptions either because doing so seems meaningless. In this way, we have been able to

define the behavior of the operations of a data type completely and uniformly, without

extending the definition of any of its defining types thus preserving the modular structure

of the type mechanism.



- 63-

2.3.3 A Simpler Approach

In this subsection, we discuss another approach for modeling the exception

behavior of a data type, which is simpler than the approach discussed earlier. This

approach has been generally assumed in the literature on algebraic specification of data

types when the authors do not wish to discuss the exception behavior of the operations

[29, 77]. The ADJ group's work [23] is an attempt to formalize it, and Guttag 131] embeds it

in a rich way in a specification language. We discuss this approach for two reasons: (i) our

discussion is simpler and more natural than that of 123], (ii) our discussion would place the

works of those who have implicitly or explicitly assumed this approach of modeling

exceptional behavior on a finn basis, and (iii) our discussion provides a semantic basis of

Guttag's specification language.

In this approach, exceptions signalled by operations having the same range are

not distinguished and no information is passed with an exception to its handler. An

operation on an input either returns a normal value or signals an exception failure. For

example, the operations Push, Pop, and Replace signal the same exception failure. Every

operation is assumed to expect normal values as arguments. If an argument to an operation

signals failure, then the operation propagates it by signalling it.

Such exceptional behavior of the operations can be modeled by extending the

domain of every D' E A' in an algebra A of type D (as defined in Subsection 2.2.1) with a

special exception failure ; we denote it by errD,. Whenever an operation a signals failure,

its interpretation f0 in A returns errD' , where D' is the range type of a. So we have

A- [{ l U { errD } U I VD U { errDl II D' E A 1; { fa I a C} ].

If any of the x,'s is errD, then f0(x, ..... x) = errD0, i.e., f, is strict with respect to its

arguments. We assume that for every D' E A', it is possible to distinguish between the

normal values and the exception value errD,.

We modify the definition of Bool given in Section 2.2. The model B of Bool is

extended to have the exceptional value errb.

B' = ( { { true, false, errb 1 }; 1 T, F, V, -, A, =, € } ),
where the definitions of the boolean operations remains the same on normal values.

k . _ _ .. . ....



-64-

Besides, every function is strict. Bool is defined as the set of all type algebras isomorphic to
B3'.

We discuss a type algebra A'tk of Stk-Int-100.

Asi - [ { SQ'U { errstk 1, Z', B' }; { Nu', Pu', Po', To', Re', Em' } ,
where B' = B U {errb},

Z' = ZU{erri},

Nu' A <)

Pu'((i ,..., iM>, i) a errstk ifm> 100

L , •,i, i> otherwise
po,(<il .... i>) _A o< ifm = 0

t. (i],...,~ i_1> otherwise

To,(il,..' ra = _A err i f1
otherwise

Re'((i,..., i>, i) A__ errstk ifm = 0

?.- (i1'""" ' m' i> otherwise

Stotherwise.

The theory discussed in Section 2.2 directly extends to the above algebras also.

The definition of the interpretation of a term in Subsection 2.2.3 easily extends. A ground

term of type D' or an instantiated term may interpret to errD, The definition of

distinguishability of values of D in a type algebra also extends in a straightforward mainer.

We want to add to the definition that (i) every normal value of D is distinguishable from

the exceptional value errl), and (ii) two normal values vi and v 2 in V,) of A are also

distinguishable if there is a term c (x) such that c [x/v1 interprets to an exceptional value,

whereas c [x/v2] interprets to a normal value, or vice versa.

The behavioral equivalence relation on modified type algebras is a simple

extension of the definition given in Subsection 2.2.5. The modified definition of

isomorphic equivalence requires that every mapping 4l)' in b maps the exception value

in A to err), in A Other conditions remain the same in the definition. A data type



- 65 -

D is a set consisting of all behaviorally equivalent type algebras of the above kind. The

observable equivalence and distinguishability relations on ground terms are defined in the
same way as in Subsection 2.2.7.

'*1

iI



-66-

2.4 Mutually Recursive Data Types

We have assumed so far that data types can be designed hierarchically one at a

time and that the data types on which a data type D depends can be designed

independently of D. These assumptions are not valid for a subclass of data types. In some

cases, it may be more meaningful to associate an operation with a collection of data types,

instead of a single data type; for example the conversion operations between the data types

fixed point number and floating point number. Or a group of data types may be mutually

dependent SuCh1 that they cannot be defined one at a time, for example, data types picture,

contents, component, and view in [321 are mutually recursive. In the latter case, the

dependency relation on data types as defined in Section 2.] will have cycles.

For the above cases, we consider groups Of Mutually recursive daLd1 types together

as one entity, and define direct dependency and dependency relation on Suich groups and

nonrecursive data types in an analogous manner so that the relations do not have any

cycles. A group of mutually recursive data types can be then defined hierarchically when

considered as one entity.

Let D stand for a group of new types being defined together. Let & stand for the

set of their defining types, assumed to be defined elsewhere, and 12 stand for the set of their

operation names.

A type alget a for a group of new data types D is a straightforward extension of a

type algebra for a single data type D. It has a -domain corresponding to every D E D in

addition to the domains corresponding to every defining type D' E A and the exception

domain EXV. It also has a total function (deterministic or nondeterministic) corresponding

to every operation name in ul. Instead of having a single principal domain as in case of a

type algebra for a single data type, we have many distinguished domains in a type algebra

for D: Every domain corresponding to D C D is a distinguished domain. In order for the

distinguished domains to be nonempty, it is necessa'ry that at least one of the data types in

D has a basic constructor (a constructor that does not take any argument of a type in D).

Furthermore, all the distinguished domains must be constructible mutual recursively.

The theory developed for a single data type easily extends to a group of mutually

recursive data types. We can diroctly extend the definition of the interpretation of a term



- 67-

in a type algebra defined above. The observable equivalence and distinguishability

relations can be similarly defined on V1) for each D E D. They induce the observable

equivalence and distinguishability relauons on the ground terms of type D. Behavioral

equivalence relation on type algebras can also be defined analogously.

A group of mutually recursive data types D is a set of all behaviorally equivalent

type algebras of the above kind. Every type algebra in the equivalence class is a model of

D. A model of D defines a value set of each D E D, which is the distinguished domain

corresponding to D in the model.

IJ



-68-

3. Specification of an Abstract Data Type

in this chapter, we discuss a method for specifying abstract data types. Like the

definition method, the specification method is hierarchical and modular. We describe a

specification language in which data types having nondeterministic operations and having
operations exhibiting exceptional behavior can be specified. The main goal in designing

the language has been to develop a good notation for expressing the design of the data

component of programs. The specification language Should be as flexible as possible to

enable a designer to conveniently express his/her intent. We do not restrict a specification

to specify a single data type only, instead a specification in general specifies a set of related

data types sharing a common behavior. A specification onl. expresses properties particular

to the data type(s) being specified, Properties common to all data types, for instance, the

minimality property, are not specified. They are instead assumed in the semantics of the

specification language.

Since a data type is a set of models, its specification(s) must capture the properties

common to these models. The specification must specify the syntactic structure as well as

the observable behavior of these models. There can be many ways to do this. One way is

to present a model that acts as a representative of the above set. For instance, the definition

of a denotation of a data type D can serve as its specification; as an example, the model AM

of Set-tnt can serve as a specification of Set-nt. A data type is specified in this way in the

model approach [3], which is briefly discussed in Section 1.2. This method has a

disadvantage that since a particular representation of the values of the data type is used to

specify the data type, there is a danger of the irrelevant properties of the model being

associated with the data type. This shortcoming of the model approach can be

circumvented by choosing an appropriate semantics of the specification method as in [3].

Another way is to specify the properties that characterize the observable behavior

of all models of a data type. We adopt this approach, which is called the axiomatic

approach in Section 1.2. We specify the observable behavior as a finite set of properties of

the operations of D. These properties are expressed abstractly without referring to any

particular model of D and without assuming any particular representation of the values of



-69 -

D. They are presented as first order formulas relating sequences of operations that return

observably equivalent values. The reasons for choosing the axiomatic approach are:

(i) A theory of a data type can be directly developed from its axiomatic specification
without refer ring to any other domain of discourse,

(ii) our work can be integrated with the work on the development of axiomatic systems

for reasoning about control structures [17, 36] and the automation of the verification

process, and

(ii) the methodology for proving the correctness of an implementation of the data type
with respect to its specification is simple and natural for a wide class of specifications.

Instead of allowing arbitrary first order formulas, we restrict the axioms to be

equations because

(i) an equational specification is amenable for deducing the properties of a data type (see

the next chapter, where the proof theory of a data type is developed from its specification;

also see M usser [60] for discussion of a theorem prover for eq uational specifications),

(ii) an equational specification is easier for a programmer to understand (see 1291 for a

discussion on viewing equational axioms as recursive programs),
(iii) certain desirable properties of specifications can be guaranteed by putting constraints

on equations [281,
(iv) an equational specification has been found to be more suitable for semi-automatically

deriving an implementation of a data type [64, 681, and
(v) a model can be more easily constructed from a equational specification than from a

specification whose axioms use existential quantifiers [16J.

Our specification language allows a specification to introduce a finite set of

auxiliary functions to express the properties of the operations. An auxiliary function is not

an operation of a data type; rather it is a helping function in a specification. So it is a part



- 70-

of a specification of a data type, and not a part of the data type itself.' The use of auxiliary

functions in a specification is a necessity, because if axioms are restricted to be equations

without auxiliary functions, many data types cannot be specified [2, 53, 71, 43J.' With the

help of a finite set of auxiliary functions, one can specify using a finite set of equations,

(i) any data type with a recursively enumerable (r.e.) value set and a finite set of total

deterministic computable functions [28, 431, and

(ii) any data type that can be specified using a recursively enumerable set of equations,

restricted conditional equations, or positive conditional equations 143].
In this sense, our specification language is quite expressive. (For a detailed discussion of

the expressive power of an equational language with atxiliary functions and how it

compares with other algebraic languages for specifying data types, see [43].) Besides, we

1have found auxiliary functions convenient and usefil in expressing the properties of

complex operations: the judicious choice of auxiliary functions often results in

specifications that are relatively easier to write and understand as compared with equivalent

specifications written without using the auxiliary functions.3

We -discuss the specification language in the first section. Different components

of a specification are described. The semantics of a specification is given in the second

section. It is defined to be a set of related data types sharing the common behavior

captured by the specification. In the third section, we state what it means for a data type to

be (precisely) specifiable by a specification; equivalence among specifications is defined.

The fourth section discusses the specification of the data type boolean. In the fifth section,

we discuss two structural properties of a specification, consistency and behavioral

1. An auxiliary finction should not be confused with an internal procedure needed in an implementation of
a data type to implement its operations. (Chapter 5 discusses internal procedures.) An auxiliary function
however serves the same purpose in a specification as an internal procedure in an implemcntation. It is not
available to the users of a data type, and is used only for expressing and proving properties of the data type
from its specification.
2. We conjecturcd in 1431 that even if axioms arc allowed to hc conditional cquations (restricted. positive, or
unrestricted). there are many interesting data types that C annot he specified without auxiliary functions.
3. Guttag 1311 rightly compares the use of auxiliary finctions in a specification with the use of subroutine

(prox:cdure) abstraction while writing a complex piece of software.



-71-

completeness, expressed in terms of relationships among the set of data types specified by

the specification. The consistency property requires that a specification specifies at least

one data type. The behavioral completeness property requires that a specification

completely specifies the observable behavior of the operations on intended inputs: it rules

out only intentional incompleteness in a specification. In the sixth section, we compare our

specification language with the works of Zilles [771, Guttag et al. [29, 31], the ADJ group

[23], Goguen 120], Burstall and Goguen [71, Goguen and Tardo 1211, and Nakajima et al.

1621.

II



-72-

3.1 Specification Language

The specification language has a single syntactic unit, called a specification module

(or simply a specification), which in general specifies a set of related data types. We first

discuss specifications of hierarchically structured (nonrecursive) data types; at the end of

the section we discuss a specification for mutually recursive data types.

We will use a single name to stand for any of the data types specified by a

specification. We may use the same name as the name of its specification whenever it is

possible to disambiguate from the context whether a name refers to a data type or its

specification. When we consider more than one specification of a data type, we use

different names for different specifications. Though a long name for a concept may convey

information about the behavior of the concept, the long name can be inconvenient to use,

so we allow abbreviations for long names to be introduced in a specification preceded by

the symbol as. Let D stand for a type being specified by a specification S.

A specification in general has four components:

(i) Operations,

(ii) Auxiliary Functions,

(iii) Restrictions, and

(iv) Axioms.

The operations component specifies the syntactic properties of D, and the restrictions

component and the axioms component specify its semantic properties. We illustrate

different components of a specification using the specifications given in Figures 3.1 and 3.2.

Figure 3.1 is a specification of Set-Int. Figure 3.2 is a specification of a set Stk-Int of data

types; the data type Stk-int-IO0 defined in Chapter 2 is in this set.

A specification is hierarchically structured; it refers to the specifications of data

types other than D assuming that these specifications are given elsewhere. Data types other

than D may have already been specified, or they will be specified later. For example, the

specification of Set-lni in Figure 3.1 refers to a specification of a data type Int. We assume

that Int is specified elsewhere. Since a specification of int can specify a set of data types,

Il in Figure 3.1 stands for any data type in the set.

k __ Y



- 73 -

Figure 3.1. Specification ofrSet-IntI Operations
Null -. Set-tnt as 0
Insert Set-tnt X mnt -~Set-tnt

Remove Set-tnt X tnt -. Set-tnt
Has Set-tnt X Int -*Boot as x2 E x,
Size Set-tnt -. nt as #(l

Choose Set-tnt - nt n-ondelerininistic
no-elementO

Restrictions

# (s) =0 Choose(s) signals no-element

Axioms

Remove(0, =) 0
Remove(Insert(s, ii), i2) =_if il i2 then Remove(s, il) else tnsert(Remove(s, M2, il)
iE0 -mF
il E tnsert(s, i2) =_if i1i i2 then T else ii E 9
# (0) 0
# (lnse rt(s, 0)) if I E s then # (s) else # (s) +.1
Choose(s) E s T

Whenever we introduce a new construct of a specification in this section, we

informally discuss its meaning for motivation and clarity of exposition. As was stated

above, the precise semantics of a specification will be given in the next section.

3.1.1 Operations

This component specifies (i) the domain and range, and (ii) the names of the

exceptions signalled by every operation of D on its intended inputs, along with the types of

the arguments to the exceptions. It is a sequence of specifications of the followtng form:



- 74-

a:Dix ... xD n D'
-- ex(Di... D I!

exk(Dkl ... D kk,

where D, x ... x D is the domain of a and D' is its range. a signals exceptions having

names ex, .... exk whose argument types are also specified. If an operation is specified

to signal an exception, the exception must be listed in its syntactic specification. If a does

not take any argument, then it is a constant of its range type. If an exception name ex does

not take any argument, it is expressed as ex() or simply ex. The operations component of a

specification of D indirectly specifies the A and 0 of D.

When an abbreviation is introduced for an n-ary operation name, we can specify
how the abbreviation distributes over the arguments using the argument place holders

x1 .... x For example, the operation Has of Set-nt is abbreviated to 'E' and it is used as

' x1. We discuss later (Subsection 3.1.5) how nondeterministic operations are specified.

3.1.2 Auxiliary Functions

This component is optional; it exists if auxiliary functions are used in writing the

Axioms and the Resirictions. As was discussed before, auxiliary functions are introduced to
enhance the expressive power of the specification language and to make the language more

flexible so that specifications are easier to write and understand. We do not recommend

choosing auxiliary functions randomly to express the behavior of the operations. Instead,

they should be chosen with care. An auxiliary function should embody a subsidiary

procedural abstraction needed to express the operation behavior. It is a good design

practice to completely specify an auxiliary function even if its behavior is needed only for a

subset of its input domain. Furthermore, if an auxiliary function is of the result type D, it
should not have to construct values that cannot be constructed by the constructors of D.



- 75 -

Every auxiliary function is deterministic, and there are no restrictions associated with it.4

Wo xmle specifiatheiomn an ranFge of2 evy auxiliary function uSdine.

Fo Wxmle speciftc atin fa-nd ian Fge 3.2 esvth auxiliary function usdie

specification in the same way as the operations. Let A stand for the set of all auxiliary

functions used in a specification. An auxiliary function may use a data type not in A

(=AU D) as a component of its domain or as its range, we call such a data type as an

auxiliary type. Like a defining type, every auxiliary type is assuimed to be specified

elsewhere. Let A, stand for the set of auxiliary types Used by the auxiliary functions in Af.
If a specification does not have the auxiliary functions component, then Af 0 and

At =0.

We extend the definition of a term in Subsection 2.2.3 to include terms

constructed using the auxiliary functions and the operation symbols of the auxiliary types.

Der. 3.1 An auxiliary ierm of type D' E D" U (D"~)* is defined inductively as
D"E~D I U At

(i) a term of type D',
(ii) if a E A such that its domain is Dix . .. x Dn and its range is D', then 'a(e1 ,. e n

is an auxiliary term of type D' if and only if each ei is an auxiliary term of type D.. *

Clearly, if Aland Aate the empty sets, the definitions of an auxiliary term and a term

coincide. An auxiliary exception term can be defined by replacing terms by auxiliary terms

in the definition of an exception term in Subsection 2.3.2. Henceforth, by a term, we mean

an auxiliary term, and by an exception term, we mean an auxiliary exception term, unless

stated otherwise.

4. These constraints on auxiliary functions arc imposed for conlveniecelC and simplicity. Our formalism
would work equally well if thecse constraints arc not imposed.



- 76 -

Figure 3.2. spccirication or Stk-Int

Stk-lnt as Stk

Operations

Null -Stk

Push Stk Xlnt -. Stk
-+overflow(Stk, Int)

Pop Stk -~Stk

Top Stk -4 nt
no-topO

Replace Stk X tnt - Stk
Empty Stk -#Boot

Auxiliary Functions

Size Stk -- tnt as #(x)

Restrictions

Prc(Pop(s)) Empty(s)
Pre(Replace(s, M) Empty(s)

Empty(s) =* Top(s) signals no-topO
Push(s, i) signals ove rtlow(s, i) ># (s)> 100

Axioms

Pop(Push(s, W) =s
Top(Push(s, 1))=I
Replace(s, 0) Push(Pop(s), i)
Empty(NulI) T
Empty(Push(s, 0)) =IF
# (Null) -=0
# (Push(s, M =) # (s) + 1



- 77 -

3.1.3 Restrictions

$ The restrictions and axioms components of a specification specify the normal as
well as the exceptional behavior of the operations. They also define the auxiliary functions,

if any, used in the specification. The axioms component specifies the normal behavior of

the operations. The exceptional behavior is specified as a separate layer over the normal

behavior. This is achieved by specifying resiriclions on the operations in the restrictions

component. An axiom in the axioms component holds only if the operations used in the

axiom satisfy the specified restrictions. The restrictions component is an extension of the
A Resiriclions Speci~ficationis of Guttag [31].

The restrictions component is a set of restrictions; every restriction is associated

with an operation. There are two kinds of restrictions:

(i) Preconditions, and

(ii) Except ion Conditions.

Every exception listed in the syntactic specification of an operation should have an

associated restriction specifying the input condition when the exception is signalled or may

be signalled by the operation. 'The boolean conditions in the exception conditions for an

operation must be disjoint. Another constraint on the boolean conditions when they use

nondeterministic operations is discussed later. As is stated in the first chapter, for

operations having complex behavior, it may be very difficult to specify conditions on their

inputs under which they signal a particular exception. This approach of specifying the

exceptional behavior is not suitable for such operations.

3.1.3.1 Preconditions4

The precondition restriction for an operation specifies the subset of its input

domain on which the operation behavior is of interest. The operation is expected to be

invoked on inputs in this subset; it is the user's responsibility to ensure this. The operation

behavior is specified only on these inputs; it is left unspecified on inputs Outside the subset

because it does not matter. An operation can either signal an exception or return a value

on an input not satisfying the precondition. For example, in certain applications, we mayj



-78-

not care how the operation Replace in Figure 3.2 behaves on the empty stack as it is never

going to be invoked on the empty stack. It could either return a stack value or signal an

exception. Also see [51, 32] for more examples of such operations. If a specification

comnmits to a particular behavior on an input not satisfying the precondition, for instance

signalling an exception, many implementations would be ruled out. Our approach is to

encourage a designer to specify only that portion of the data type behavior which is of1 interest to him and allow the rest of the type behavior to be left unspecified so that an

implernentor has the maximum flexibility.

The precondition restriction for an operation a E 92 is specified as:

Pre(o(A)) :: P(A),

where P(A) is a boolean term having xV .... I,, (the input X) as its variables, and it cannot

signal on X. The axioms involving u hold only if the input to every invocation of satisfies

the precondition P(X). if the Restrictions component does not specify a precondition for

an operation, the operation is assumed to be specified for its entire syntactic domain, i.e., its

precondition is T. For example, - Empty(s) is the precondition for Pop as well as Replace

in the specification of Stk-Int in Figure 3.2. The specification does not specify the behavior

of these operations for the empty stack. No precondition is specified for any other

operation, so their preconditions are T. Similarly, no precondition is specified for any

operation in the specification of Set-lnt in Figure 3.1. If a precondition different from T is

specified for an operation a, a is said to have a nontrivial precondition. Let P stand for

the precondition for a.

If an operation a does not signal on an input not satisfying its precondition, it

cannot return an arbitrary value, If o is a constructor, as for example, the operations Pop

and Replace in Figure 3.2, the result must be constructible by the constructors of D using

inputs satisfying the associated preconditions. Similarly, if u is an observer, then it must

return a value of its result type.



- 79 -

3.1.3.2 Exception Conditions

There are two kinds of exception conditions:

(i) Required exception conditions, and

(ii) optional exception conditions.

A required exception condition for an operation a is expressed as

R(X) 0 a(X) signals ex(e,.. .,),

- rstating that if the input X satisfies the precondition P and the boolean condition R(X),

which is a boolean term, then the operation a must signal the exception ex having e, ..., ek

as the arguments to its handler(s). The exception name ex is of arity Di x ... x Dk , and

each e. is a term of type D having variables only from the set { xV .... x }. For example,

in Figure 3.1, the operation Choose is specified to signal the exception no-element on the

empty set. In Figure 3.2, the operation Top signals no-lop on the empty stack. We call the

above exception condition required because the operation is required to signal the

exception. It is possible to specify an operation signalling different exceptions for different

subsets of inputs.

In certain applications, it may be restrictive to require that an operation signal an

exception when its input satisfies a condition. At the same time, it may not be desirable to

leave the operation behavior completely unspecified. Instead, we would like to place

constraints on the behavior. If an input to the operation satisfies the specified condition,

the operation is specified to have the option of either signalling the specified exception or

returning a normal value. In case the operation chooses not to signal, it must behave as

specified by the axioms. Optional exception conditions are introduced to capture such

behavior of an operation. An optional exception condition is expressed as

o(X) signals exe ..... e) = O(.),

stating that in case a signals an exception ex having e1 .... ek as arguments and the input X

satisfies the precondition P0  then the input X must also satisfy the boolean condition

O(X), a boolean term.

Optional exceptions are especially useful for specifying a set of similar data types

having values whose capacity (size) has different upper bounds. It is possible to state a size



-80-

requirement on the values of the data type, but at the same time not be very restrictive

about the requirement. An implementor could decide on the exact bound based on

convenience insofar as the specified bound condition is met. Such behavior of a data type

is specified by stating that the constructors ha e the option to signal exceptions.

For example, in the data type Stk-lnt-I10 defined in the previous chapter, the

operation Push signals if its stack argument is of size 100. If the desired requirement is that

a stack value be able to store at least 100 integers, this behavior of Push is very restrictive.

It rules out a implementation supporting stack values of size > 100, even though the.

implementation has the desired behavior except that Push does not signal exactly on stacks

of size 100, but rather on stacks of size 128. We specify the desired requirement in
Figure 3.2 by stating that Push optionally signals; whenever Push signals oierflow, its stack

argument must be at least of size 100. In this way, a specification specifies the least upper

bound on the size of the values of a data type, and the responsibility of deciding the exact

upper bound is delegated to an implementor. Such a specification is flexible and not

restrictive.

3.1.3.3 Discussion

Note thiat the nontrivial precondition restrictions and the optional exception

conditions leave the specification of the operations incomplete because the operation

behavior is not completely specified on a subset of inputs. An operation could behave on

such inputs in any way consistent with the specified behavior. That is why a specification

in general specifies a set of related data types, the operations of these data types have the

same behavior for a subset of their syntactic domains. For example, Slk-lnt specifies data

types having stack values whose size has different Lipper bounds > 100. The operations of

these data types behave the same way on stacks of size < 100, except that Pop and Replace

of different data types may behave differently on the empty stack. We call such

incompleteness in a specification as inicntionaf incompleteness, in contrast to unintentional

incompleteness introduced because of the omission on the part of a designer in specifying

the properties of the operations.

It should be intuitively clear that if no nontrivial precondition and no optional



-81 -

exception condition are associated with any operation, and the axioms completely capture

the observable behavior of the operations, then a specification speci ties a single data type in

case the specification of every defining type also specifies a single data type. We elaborate

this informal statement later in the chapter.

3.1.4 Axioms

This component specifies the normal behaviur of the operations in f and the

auxiliary functions in At if they are used in a specification. The behavior is specified as a

finite set of equations of the form 'e, = e2,' where e, and e2 are auxiliary terms of the same

type: at least one of e, and c2 must have its outermost symbol in Q U At , otherwise an

equation would not be specifying a property of D. 'el = e2' informally means that the

sequences of operations expressed by the terms e, and e2 have the same behavior, i.e., when

values are substituted for variables in e1 and e2, the instantiated terms interpret to

observably equivalent values. The symbol -' is interpreted as the observable equivalence

relation. The equations attempt to capture the observable equivalence relations on grouid

terms defined by the data type(s) being specified, which is discussed in Chapter 2.

If a specification does not have the restrictions component (i.e., the operations do

not signal exceptions and there is no nontrivial precondition associated with any operation),

then the variables in an axiom are universally quantified: Any value of the appropriate type

can be freely substituted for a variable.

If a specification has a restrictions component, then an axiom is interpreted in a

different way; the variables in an axiom cannot be freely substituted. We must also

consider the restrictions imposed on the operations appearing in the axioms. The values

substituted for the variables must satisfy the following two conditions:

(i) For every operation u having a nontrivial precondition P. , the arguments to every

invocation of a in the axiom must satisfy P. , and

(ii) an instantiation of any subexression in the axiom must not interpret to an exception

value.

The condition (ii) above is equivalent to requiring that an interpretation of an instantiation

of e or e2 is neither undefined nor'ah exception value. For example, consider the axiom

o,- .&'-



- 82-

Replace(s, i) -iusi(Pop(s), i) (*)

in the specification of Stk-lnt in Figure 3.2. It applics only for the values of s for which1 Empty(s) holds, which is the precondition for both Replace and Pop. Furthermore, Push

must not signal overflow on the result returned by Pop, which it cannot in any case. The

equations characterize the normal behavior of the operations in this way.

It is often the case that two terms are observably equivalent only when a condition

is placed on their variables; for example, in the second axiom in the specification of Set-lnt

in Figure 3.1, Removc(Insert(s, il), i2) is observably equikalent to Insert(Rernove(s, i2), if)

onl) if il and i2 are not equal. So, while writing the axioms, it is convenient to assume an

auxiliary finction if-then-else corresponding to every D E A' U A The definition of
It

if-then-else is given as:
if-then-else : Bool X D' X D' -. D' as if A then x else x

if T then x else y - x
if F then x else y y.

Since these functions are used frequently, they are assumed to be implicitly defined

whenever needed. They are not explicitly stated in the auxiliary functions component of

the specification, and are not in Af* If Bool is not a defining type, then Bool is assumed to

be an auxiliary type. An axiom of the form 'e1 = if b then e2' stands for the equation

-then-else(b, e2, el).' We call 'e, = if b then e2 a condlional equalion.3 It is

equivalent in its interpretation to the formula 'b = T = e, = e2.' An axiom of the form

e, = if b then en else e2' stands for the equation 'e1  if-then-else(b, e1 , e12).' It is

equivalent to the following two conditional equations

e1 -if b then e,'

e -if - b then e1 2.'

5. Note that a conditional equation as defined above is different from a positive conditional equation of the
Al)J 171. in which the condition in the axionl can he expressed using = positivelN. A condilional equation of
the above fnirm is called a r. sitic conditional equation in 1431. We hae chosen such axioms because of
simplicity, as even using posilive conditional equations as axioms does not add to ihc expressive power of the
specification lInguage 1431. Iurdiermore, homomorphisms do not preserve positi\e conditional equations.



- 83-

3.1.5 Specifying Nondeterministic Operations

If an operation is nondeterministic, this is specified using the symbol

nondeterIninistic following its range specification, as for the Choose operation of Set-Int in

Figure 3.1. The behavior of a nondeterministic operation is specified in the same way as of

a deterministic operation. The restrictions component may specify a precondition, a set of

required exception conditions, and a set of optional exception conditions for a
nondcterministic operation. For a nondeterministic observer returning many possible

results on an input, the axioms do not specify the results- instead, they specify the

properties of the results. For example, the axiom specifying the behavior of the

nondeterministic operation Choose of Set-nt on an nonempty set s states that a result

returned by Choose on s must be an element of the set s. For a nondeterministic

constrtjctor, its behavior is characterized by specifying the results returned b) the observers

on the possible values constructed by it.

If a boolean condition in a restriction is expressed using nondeterministic

operations, we require that for every input X, the boolean condition behaves

deterministically, i.e., it returns either T or F. It is meaningless for a boolean condition to

return T as well as F on X: In case of a precondition, the instantiated boolean condition

returning T as well as F would mean that the input satisfies the precondition as well as does

not satisfy the precondition. In case of an exception condition, this would mean that F

signals or may signal on the input as well as that a does not signal on the input.

For an equational axiom 'e, = e2' expressed using nondeterministic operations, we

use the following interpretation: For an instantiation of the variables in the axiom allowed

by the preconditions and restrictions, the set of possible values returned by the instantiated

e, is observably equivalent to the set of possible values returned by the instantiated e2 (i.e.,

for every choice of nondeterministic operations in el , the value returned by the instantiated

ei is observably equivalent to a value returned by the instantiated e2 for some choice of

nondeterministic operations in e2, and vice versa). We have rejected another possible

interpretation which is that for any choice of nondeterministic operations in both e, and e2,

the values returned by the instantiated e, and e2 are observably equivalent, because under

this interpretation, the axiom does not hold when el and e2 exhibit nondeterministic



- 84 -

behavior; an equational axiom thus does not express any useful property. If an axiom is a

conditional equation 'e, = if b then e2,' where the boolean condition b involves

nondetcrministic operations, then we require that for an instantiation of the variables x, .....

x, b behaves deterministically. As in case of a boolean condition in a restriction, an

instantiation of b behaving nondeterministically and returning T as well as F does not make

any sense in a conditional equation.

An alternate approach for specifying a nondeterministic operation would be to

indirectly specify it by having the axioms specify its relation, which is deterministic. The

relation can be specified using equations and conditional equations. However, the

constraint that if the nondeterministic operation returns a normal value on an input, then

the relation holds for the input and at least one result, cannot be expressed in terms of

equations and conditional equations. This can be circumvented by assuming that every

such relation satisfies the above constraint. If a nondeterministic operation signals on an

input, some convention about the behavior of the relation on such an input must be

decided. Using this approach, it is possible to specify the precise amount of

nondeterminism an operation should have. However, we have adopted the former

approach because of the following reasons:
(i) We do not want the specification to specify the precise amount of nondeterminism an

operation should have; instead, we leave this decision to the designer of an

implementation,

(ii) it seems more natural to directly specify the behavior of an operation than specifying

the corresponding relation,

(iii) the semantics of a specification designed using the latter approach would have to be

derived indirectly, as should be evident from the discussion in the next section, and

(iv) if we adopt the latter approach, the normal behavior of the nondeterministic

operation would be indirectly specified by specifying its relation, whereas its exceptional

behavior would be directly specified. We would like to avoid using two notations for the

same concept.

But one major advantage of adopting the latter approach is that we do not have to develop

any additional formalism for nondeterministic operations. The theory developed for



- 85 -

specifications specifying only deterministic operations applies to nondeterministic

operations also.

3.1.6 Specification of Mutually Recursive Data Types

A specification for mutually recursive data types is similar to a specification for

nonrecursive data types. Let D stand for an instance of a group of mutually recursive data

types being specified. The specification is given either the name of some daia type in D or

a name different from the names of data types in D. Like a specification of a nonrecursive

data type, it has four components:

(i) Operations,

(ii) Auxiliary Functions,

(iii) Restrictions, and

(iv) Axioms.

The Operations component specifies the syntactic properties of the operations of D. It is

divided into subcomponents. There is a subcomponent entitled D corresponding to every

data type D in D specifying the operations of D. So, a subcomponent is like the operations

component of a nonrecursive data type as discussed above.. Besides, there is another

subcomponent entitled Combined Operations, which specifies the syntactic properties of the

operations not belonging to any particular data type, but rather to the whole group D. The

remaining three components are the same as in a specification of a single data type. If D

does not have any combined operations, the specifications of data types in D can be given

separately like nonrecursive data types. However, the semantics of these specifications

must be given together.

Henceforth, we discuss only nonrecursive data types. From the following

discussion, it should be clear how to extend the results and the theory to mutually recursive

data types. For instance, we can give the semantics of such a specification in a similar way

as for nonrecursive data types (discussed in the next section) except that we will need to use

type algebras defined in Section 2.4.

.. A



- 86 -

3.2 Semantics of Specification Language

The semantics of a specification S is defined to be a set of related data types.

Each data type in the set is said to be specified by S. Let D(S) stand for this set. Since a

specification S refers to other specifications assuming them to be given, for example, the

specification of Set-tnt refers to the specifications of int and Bool, the semantics of S is

given using their semantics. For a defining type D' E A used in S, we assume that D' has a

specification S' having a nonempty set of data types as its semantics; D' stands for any data

type in D(S').

IfS does not specify any nondeterministic operation, then every data type in D(S)

can be shown to be deterministic. Operations of different data types in D(S) share the

common behavior specified by S. Different data types differ in the way their operations

behave on inputs not satisfying the preconditions specified for the operations and/or on

inputs on which the operations are specified to have the option between signalling and

returning a value. If the axioms do not completely capture the observable behavior of the

operations, then data types in D(S) have operations ilaving different behavior on input on

which the axioms leave their behavior unspecified.

In case S specifies nondeterministic operations, then data types in D(S) also differ

in the amount of nondeterminism their operations have. D(S) has data types in which the

operations specified to be nondeterministic are deterministic as well as data types in which

such operations have the maximum amount of nondeterminism allowed by S. For

example, the semantics of the specification of Set-tnt given in Figure 3.1 has a data type in

which the operation Choose is deterministic, returning the maximum integer in a no.nempty

set s passed as the argument to Choose. It also has the data type Set-tnt defined in the

previous chapter in which the Choose nondeterministically picks any element of s. In

general, a data type in D(Set-int) has the operation Choose return an element from a

nonempty subset of s.

The semantics of a specification specifying nondeterministic operations is thus

necessarily a set of data types differing in the amount of nondeterminism these operations

have, even if the specification does not specify any precondition or any optional exception

condition for the operations and the specification completely specifies the observable



- 87 -

behavior of the oper.Ations. This semantics of a specification is chosen because of our view

that a specification should not constrain an implementation to have any precise amount of

nondeterminism, and that the decision about how much nondeterminism an
imph nientation should have, be left to the designer of the implementation. Since a

specification serves as an interface between the programs using the data type and the

implementation(s), every theorem derived from the specification, as discussed in the next

chapter, must hold for a correct implementation when interpreted appropriately.

It is possible to write a specification in our language which specifies unbounded

nondeterminism. (The term unbounded nondeterminism used here is different from the

way it is used in [13, 35].) For example, in the specification of N1 (a version of the data

type naural ntrnber) in Figure 3.3 specifies unbounded nondeterminism because the

operation Pick is specified to have unbounded nondeterminism. For such a specification

there does not exist any data type having maximal amount of nondeterminism. We will

precisely state the condition when a specification S specifies unbounded nondeterminism.

For a specification specifying bounded nondeterminism, we define data types having

maximal amount of nondeterminism allowed by the specification.

Instead of giving the semantics of S directly in terms of data types, we give its

semantics as a set of (well formed) type algebras. Let F(S) stand for this set. We then

partition this set using the behavioral equivalence relation on type algebras and get the set

D(S) of data types. Each type algebra in F(S) is a model of some data type specified by S.

We first assume that S does not use any auxiliary functions, i.e., Af = 0 and At = 0.

Later, we discuss the semantics ofS assuming that Af : 0 and At ;6 0.

3.2.1 Specifications without Auxiliary Functions

A type algebra in F(S) must have the syntactic structure as specified in the

operations component of S and the observable behavior as specified by the axioms and the

restrictions in S. F(S) is inductively defined, as in Chapter 2, we combine the basis and

inductive steps into a single step. F(S) consists of all (well Iormed) type algebras of the

form

A [{VD' ID'cA' ,EXV;{ ,,I af]E



- 88-

Figure 3.3. Specification of N1

Operations

0 : N1
S :N 1  N1
P :N!- N1

-- no-pred0
S :N 1 XN 1 - Boo as x, x 2

> :N XN-. Boot aS X1 X2

Pick -- N1  nondeterminislic

Restrictions

x : 0 P(x) signals no-predO

Axioms

P(S(x)) M X
x>x =T

x>z if(x>yAy>z) then T
S(x) > x T
x > S(x) F
x > S(y) if -x> y then F
x = y -- > y A y > x)
PickO >0= T

such that A satisfies the restrictions and the axioms in S, where for each D' E A, V. , is the
principal domain of an algebra A' E F(S'). A' is a model of a data type D' in D(S').

We first discuss when a type algebra A satisfies restrictions; later we discuss the

axioms. Let X = { xi, .... x } stand for all variables in an axiom or a restriction. Let
V = { v, ..... v }, where each v, is a normal value of the appropriate type, stand for a
A-instance of X, i.e., each v is an instance of x.

3.2.1.1 Restrictions

If a nontrivial precondition P. is specified for a constrlctor a, then on an input V
such that Pa [XIVq interprets to F, f,(v1, ..., v'n) either signals or returns a value
constructible by the constructor functions using arguments satisfying their preconditions.
It would be meaningless to allow r to return an arbitrary value that cannot even be



-89-

constructed. For example, if a data type satisfying the specification in Figure 3.2 has its

Push operation signal overflow on stacks of size 128, it is absurd to let the operation Pop

return a stack of size 1000 when applied on the empty stack, the input that does not satisfy

the precondition specified for Pop. Similarly, if a is an observer, then f,(vr..., v) either

signals or returns a value in V where D' is the result type ofa.

If the restrictions component specifies a requited exception condition on a as

R(X) 0 a(X) signals ex(e, .... e,),

then for every V, if both P [XI/ and R JX/IV] interpret to T, then f(1) must signal the
exception value C('1 [XI 1'1 A,.... ek [XI 1 A) for A to satisfy the above restriction.

If the restrictions component specifies a to optionally signal an exception, i.e.,

a(,) signals exe 1,.... ek) = 0(),

then for every V such that PO[X/Il interprets to T and f,(I) signals the exception ex with

the interpretations of e, [XIVI, . . . , ek [X/V] as arguments to its handlers, 0 KI /VI must

interpret to T for A to satisfy the above restriction.

Since the restrictions are assumed to completely specify the exceptional behavior

of the operations, for every operation a, the interpretation f. in A must be such that

r (VI ,..., vn) is a normal value if(i) PU[X/V holds, (ii) none of R[X/IVI holds, and (iii)

none of O[X/ holds.

3.2.1.2 Axioms

A (behaviorally) satisfies an equation 'e, - e2' (or 'e, = e2' holds in A) if and only if

for every V, one of the following conditions holds:

(i) The instantintion of el or of e2 interprets to an exception or is undefined,
(ii) the input to an invocation of some f on v' ..... v' does not satisfy the

a ] 'm

precondition associated with a (i.e., P(v. v') interprets to F) when
the instantiations of e, and e2 are interpreted, and

(iii) { e, [K/XIl A } is observably equivalent to { e2 [K/Ill A I-

In the previous section, we informally described the semantics of conditional

equations using the auxiliary functions if-then-else. Here we formalize the discussion. To



-90-

check whether a conditional equation 'e- if b then e2' holds in A, we extend A to include

the interpretation of the auxiliary function if-then-else Boot x D' x D' -. D'

corresponding to every D' E A'. The interpretation fif-then-else in the extended algebra has

the following behavior:
rfrthen-else(T, v1, v2) __ vil

rfrthen-else(F, v1, v2)  ,2.v

The interpretation of a conditional equation involving it-then-else can be verified to be

equivalent to interpreting the formula 'b - T (el - e2)' as we require that b behave

deterministically for every A-instance. Henceforth, we view a conditional equation as a

formula 'b , e, - e2' so that we do not have to consider the auxiliary functions if-then-else.

If a type algebra A is in F(S), then we say that A behavioralli satisfies S, and call

A a model of the specification S. Note that A satisfies the axioms under the interpretation

of the symbol '=' as the observable equivalence relation on the domains of a type algebra.

If a model A of S satisfies the -Lxioms interpreting '-' as the identity relation as in Logic, we

say that A identically satisfies S.

For example, the models A and A 1  of the data type Set-Int discussed in

Chapter 2 can be shown to be in F(Set-Int). So, they are also the models of the

specification of Set-lnt given in Figure 3.1. AMi identically satisfies the specification of

Set-Int. It should be easy to see that every reduced algebra in F(S) identically satisfies a

specification S because the observable equivalence relations are the identity relations.

Using the fact that the set E of observable equivalence relations on the domains in

A above is a congruence, we have

Thin. 3.1 A E F(S) iffA/E E F(S). I

So, to check whether a type algebra A is in F(S), we can check whether its reduced algebra

A/E identically satisfies S. Using the above theorem, we get

Thin. 3.2 If A E F(S), then every type algebra behaviorally equivalent to A is in F(S). I



-91-

3.2.2 Specifications with Auxiliary Functions

An .iuxiliary function is not a part of a data type, so a model in F(S) cannot have

any interpretation for the auxiliary functions. We first define an extended data type D]

from D, whose operation set is f U Af and the set of defining types is A U At. If the

Auxiliary Functions component is included in the Operations component in S, the modified

specification S1 is a specification of data types having the same syntactic structure as D1,

and S, does not use any auxiliary functions. We define F(S) for the modified
specification S1 as discussed above. An algebra A, of type Di in F(St) is

A, -[ Vl'), ID'E A'U At}  r'o  E 9tU Af~l

So an auxiliary term can be interpreted in A,. The axioms in S expressed using the

auxiliary functions in A hold in A1

For ever) algebra A1 of type D in F(S1 ), we obtain an algebra A of type D in

FRS) as follows:

A VD'1DI A {E A fuflE}1,
where for each D' E A,V = V 1, and V,) C V1

1). A function f is a restriction of f1 to the

domains of A such that VD is the smallest set closed under finitely many applications of the

functions in I fa I E Qc }. VD can be a proper subset of V D, because S may use an

auxiliary function having D as its range that constructs some extraneous values (see [701 for

an example of such a specification). 6

For example, the model Astk of the data type Stk-int-100 discussed in Chapter 2

can be shown to be in F(Stk-int). We must extend Astk to include the interpretation Si of

the auxiliary function Size such that Si(i 1, .... i>) A m, and use the extended algebra

for proving that it satisfies the axioms and restrictions in Figure 3.2.

6. However. we do not encourage specifications in which auxiliary functions are of result type 1) and
generate values not constructible by the constructors of D.



- 92 -

3.2.3 Semantics of a Specification

Using Theorem 3.2, we partition F(S) using the behavioral equivalence relation

on type algebras, and get the set D(S) of data types as the semantics of S. A reduced

algebra in every equivalence class in the partition on F(S) can serve as a representative of
the data type defined by the equivalence class. This can be pictorially expressed as

S

D(S)= Di ...

f(S)={ A1 l... A 1  ... Ak]... Ai

where Di, ... I.... are the data types in D(S), and Ak A.... A . are the

models of a data type Dk.

It should be clear from the discussion in the last two subsections that the

operations of different data types in D(S) share the behavior specified by S. However, they

differ in
(i) the amount of nondeterminism they have, if specified to be nondeterministic by S,

(ii) their behavior on inputs not satisfying the preconditions specified by S,

(iii) their behavior on inputs satisfying the preconditions and optional exception

conditions specified by S, and

(iv) their behavior on inputs on which their behavior is unintentionally omitted in S.

If S specifies c to optionally signal on a subset of inputs, a for different data types may or

may not signal for some of the inputs in the subset. If the constructors are specified to

optionally signal for expressing the size requirement on the values of a data type, different

data types have different tipper bounds on the size of their values.

For example, D(Set-lnt) defines different data types in which Choose behaves

differently because it has different amounts of nondeterminism, as was discussed earlier.



- 93 -

D(Stk-IIlt) has different data types whose operations Pop and Replace have different

behavior on the empty stack, and the operation Push behaves differently on stacks of

size > 100. Some of the data types differ in the maximum size allowed of the stacks. The

data type StklInt-100 defined in Chapter 2 is in D(S).

-I

.1

!a



85B 877 NASSACHUSETTS INST OF TECH CAMBRIDGE LAB FOR COMPUTE--ETC F/G 9/2
TOWARDS A THEORY FOR ABSTRACT DATA TYPES. U)
UIWI 80 0 KAPUR N0001-75--0661

NCLASSIFIED MIT/LCS/TR-237

23mlfmlfllfllfllfllf

-""IEEE....minmmmmmmmuuun
-- EEE'EEEEEm
-- I..'--mm



-94-

3.3 Specification of a Data Type and Equivalence of

Specifications

Der. 3.2 A specification S specifies a data type D iff D E D(S) (i.e., M,) C F(S)). 7 I

if a specification S specifies the data type D, the specification need not be precise in the

sense that it may not completely specify the behavior of D; a portion of the behavior may

not be, in fact, captured by S at all. There may be data types in D(S) different from D. We

introduce the following stronger definition for specifications specifying deterministic

operations only.

Der. 3.3.1 S precisely specifies D iff D(S) = I D I (i.e., M,) = F(S)). I

The above definition requires that the specification of a defining type D' C A also precisely

specifies D'.

For a specification specifying nondeterministic operations, its semantics has data

types differing in the amount of nondeterminism their operations have. nondeterminism

allowed by S. We define a partial ordering on type algebras in F(S) which orders data

types in D(S) based on the amount of nondeterminism in their operations that are specified

to be nondeterministic by S. Instead of comparing two arbitrary type algebras in F(S), it is

convenient to compare algebras having the same domains but differing in their functions.

Def. 3.4 Given two type algebras A and A' of D

A = [{VD.ID'EA'I,EXV;{f.IaE }I

A' = [IV DID'EA'},EXV;{ f'E~ ) I ,

A' is at least as nondeterministic as A, expressed as A <nd A', if and only if

for every operation a E 2, and for each vi, ..., v,

{ 0(v 1' ... Iv) c I (v... v)}.

Informally, the above means that every function in A' is at least as much nondeterministic

7. Recall that MD is the set of all models of the data type D.



-95 -

as the corresponding function in A. We say that A <nd A' if and only if A <nd A' and there

is at least one nondeterministic function f' in A' such that for some v,.... v,a
If f(v, ..... v) } _{f(vl,..... v) and { rf(v, ..v) }v ( ... )

We can order the reduced models in F(S) using -- nd relation.

Def. 3.5 A reduced model A in F(S) has maximal amnouni of nondeterninism allowed by S

if and only if there is no reduced model A' in F(S) such that A <nd A'. I

If a reduced algebra A E F(S) has maximal amount of nondeterminism allowed by S, then

it can be shown that any algebra behaviorally equivalent to A also has maximal amount of

nondeterminism allowed by S. Using this, we get

Def. 3.6 A data type D E D(S) has maximal ainouni of nondeterminism allowed by S if its

reduced model has maximal amount of nondeterminism allowed by S. I

For example, the model Asi has maximal amount of nondeterminism allowed by

the specification of Set-nt in Figure 3.1, so the data type Set-In( defined in Chapter 2 has

maximal amount of nondeterminiism allowed by the Npecification in Figure 3.1. It is easy to

see that no model of the specification of N1 in Figure 3.3 can have maximal amount of

nondeterminism; given any model A, we can find a A' such that A <nd A'.

Def. 3.7 A specification S specifies unbounded nondeterminism if and only if D(S) is not

empty and there does not exist a data type in D(S) with maximal amount of

nondeterminism allowed by S. I.

So, the specification of N1 specifies unbounded nondetenninism because of the operation

Pick. The specification of Set-lnt specifies bounded nondeterminism as there are data

types with maximal amount of nondeterminism allowed by the specification of Set-nt in

D(Set-Int). In this thesis, we have considered data types with operations having only finite

nondeterminism, so we are interested in specifications that specify bounded

nondeterminism. Henceforth, we assume that a specification S does not specify

unbounded nondeterminism.

In case of a specification specifying nondeterministic operations, we have



-96-

Def. 3.3.2 S precisely specifies D if { D I = { Dm I D0M E D(S) and D has maximal

amount of nondeterminism allowed by S 1. I

The above definition also covers the case 3.3.1 above, as in case of a specification specifying
only deterministic operations, the set I Dm I DmR E D(S) I is the same as D(S). For

example, the specification in Figure 3.1 precisely specifies the data type Set-lnt defined in

Chapter 2, whereas the specification in Figure 3.2 does not precisely specify the data type

Stk-Int- 100 defined in Chapter 2.

We can also show that a specification S is correct w.r.t. a model A by showing

that A E F(S).

We can define equivalence among specifications as follows:

De. 3.8 Two specifications S, and S2 are equivalent, expressed as S1 = S2 , iff

D(S) = D(S2) (i.e.. F(S) = F(S2)).

Note that we do not make any distinction between a specification in which the

constructors are 'completely' specified and another specification in which some of the

properties of the constructors are not specified. For example, the specification of Set-lnt

does not specify the property of Insert that the order in which integers are inserted does not

matter. The specification in Figure 3.1 is equivalent to the new specification obtained by

adding the following axiom because both have the same semantics:

Insert(Insert(s, il), i2) - if il = i2 then Insert(s, it) else Insert(Insert(s, i2), i1).

However, as we discuss in Chapter 4, it is possible to prove more properties about Set-lnt

using the specification with the above axiom than the specification given in Figure 3.1. We

distinguish between the two specifications there, and define a stronger equivalence relation

on specifications which incorporates this distinction.

We have discussed above one way of precisely specifying a data type D. As stated

in the beginning of this chapter, D can be presented in many ways.8 One way is to present

8. We have deliberately used the word 'presented' instead of 'specified' to avoid confusion, as we have
precisely characterized above when a data type can be specified.



-97 -

a representative model A and define the semantics of such a presentation to be {A' IA' is
behaviorally equivalent to A 1, as in 13]. There could be other ways of presenting data

types. If the semantics of these methods can be given in terms of type algebras using our

formalism, we can relate specifications given using different methods (see discussion in

Section 3.6).



-98-

3.4 Specification of Bool

In Chapter 2, we defined the data type Bool which serves as the basis of our

formalism. Figure 3.4 contains a specification of Bool; this specification cannot be

expressed in the proposed specification language because it has an inequality

TAF

as an axiom. This axiom is introduced to capture the property that the boolean constants T

and F are distinguishable from each other. The semantics of the specification is the data

type Bool; it can be verified that every axiom in the specification holds in a model of Bool.

Because of the inequality, we do not need to introduce inequalities in the specifications of

other data types; we will show in the next chapter (Subsection 4.2.3) how to deduce them

using the above inequality. The specification of Bool is assumed to be given.

Figure 3.4. Specification of Bool

Operailons

T : -4 BooI
F : -4 Boo

not : Bool --. Boot as ow x
or : Boot X Bool - Boot as X1 V X2

and : Bool X Boot -- Boot as x, A x 2

Implies Boot X Boot -. Boot as x X2

eqv Bool X Boot Boot as X1  X2

Axioms
TiF

'F a TxVy U yVx :

xVTn T a
FVFz F
x A y - - ((- 4 V A
N y) M ( X) Vy

Y - (x= y)A(y x)



-99.

3.5 Properties of a Specification

We discuss two properties of a specification, namely consistency and behavioral

completeness, based on its semantics. These properties are different from the consistency

and suifficient completeness properties defined by Guttag and Horning [28], which are

proof theoretic (i.e., based on what can be deduced from a specification). We discuss the

relationships between the properties introduced in this section and the properties defined

by Guttag and Horning in the next chapter.

Consistency and behavioral completeness are both structural properties; they

ensure proper relationships among different components of a specification. Generally

speaking, consistency means that a property assuimed already is not invalidated. In this

case, it means that properties expressed in the specification of a defining t-pe or an

auxiliary type, or the assumptions made about the way the exceptional behavior of the

operations be specified, are not invalidated. It ensures that a specification specifies at least

one data type.

Behavioral completeness captures the intuition that a specification complewly

specifies the observable behavior of the operations on the intended inputs (i.e., inputs

satisfying the associated preconditions). A designer of a specification intentionally leaves

the operation behavior unspecified by associating preconditions and optional exception

conditions with the operations. Apart from intentional incompleteness, a specification may

be incomplete because the designer unintentionally omitted some axioms. The behavioral

completeness property ensures that a specification is only intentionally incomplete. So, it

warns against any ornission.. It is a desirable property for most of the specifications.

We first discuss the consistency property; later, we discuss the behavioral

completeness property.

3.5.1 Consistency

A specification S is, informally speaking, inconsistent

(i) if S specifies ground terms of a defining type (or an auxiliary type) that are specified

to be distinguishable by its specification, to be observably equivalent, or



-100-

(ii) ifS specifies ground terms of a defining type (or an auxiliary type) that are specified

to be observably equivalent by its specification, to be distinguishable.

An example of the first case would be a specification S Using the specification of Bool and

specifying T and F to be observably equivalent. An example of the second case is the

specification of EXI given in Figure 3.5. The data type EXI has only one value. The

predicate P distinguishes among observably equivalent ground terms of Set-l: : P returns

T if and only if in its set argument, an integer has been inserted more than once; otherwise,

it returns F. This property of the set values is not observable by the operations of Set-nt as

specified in Figure 3.1.

In either case, S does not have any models, i.e., F(S) = 0. In the first case, no

type algebra can satisfy S because one of the axioms would want two distinguishable values

in the domain of D' to be observably equivalent. In the second case, S does not have any

models because of the well formedness property of a type algebra (which is that the set of

observable equivalence relations is a congruence).

EXI cannot be implemented in any programming language in which an

implementation of a data type is hierarchically structured and the representation of a data

type is hidden from the users of the data type, since only the external behavior of Set-Jnt

can be observed. Thus the predicate P cannot be implemented because the

implementation of P must distinguish between, for example, the observably equivalent

ground terms Insert(Insert(0, 0), 0) and Insert(0, 0). Polajnar [671 has also discussed such a

violation by a specification S of the specifications of the defining types. He said such a

Figure 3.5. Specification of EXI

Operations

a : -4 EXI
P : EX I X Set-lnt --# Boot

Axioms

P(a, 0) F
P(a, Insert(s, 0) a If I C s then T else Pa, s)



-101-

specification had protection errors.

A specification can also be inconsistent because the exceptional behavior of the

operations is not properly specified, for example, the boolean conditions in exception

condition restrictions may not be disjoint.

Def. 3.9 A specification S is consistent if and only if (i) the specification S' of D', for each

D' E A U At, is consistent, and (ii) D(S) is not the empty set. I

A specification S defines observable equivalence relations on ground terms just

like a data type does. By a term here, we mean a term constructed without using auxiliary

functions.

Def. 3.10 S specifies two ground terms e1 and e2 of type IE A' to be observably equivalent

(or e, and e2 are observably equivalent by S) iff e1 and e2 are observably equivalent in every

data type in D(S) (i.e., the possible interpretations of e, in a model A E F(S) are observably

equivalent to the possible interpretations of e2 in A). I

Def. 3.11 S specifies e, and e2 to be distinguishable iff e, and e2 are distinguishable in every

data type in D(S) (i.e., the possible interpretations of e1 in a model A in F(S) are

distinguishable from the possible interpretations of e2 in A). I

For example, Insert(]nsert(0, 1), 1) and Insert(0, 1) are specified by the specification of

Set-lt to be observably equivalent. Insert(0, 1) and Insert(o, 2) are distinguishable.

However the specification in Figure 3.2 does not specify Pop(Null) and Null to be

observably equivalent or distinguishable. IfS is inconsistent, there are ground terms which

are both observably equivalent as well as distinguishable by S, because f(S) is the empty

set

Since a specification S may leave the behavior of operations unspecified on

certain inputs using the precondition and/or optional exception restrictions, there may in

general cxist ground terms of type D' E A' which are neither specified by S to be observably

equivalent nor distinguishable. For example, Pop(Null) is neither observably equivalent to

Null nor distinguishable from Null by the specification of Stk-lnt in Figure 3.2, as a data

type in D(Stk-Int) may have Pop return the empty stack itself when invoked on the empty

I4 i I II IIII I I I



- 102-

stack and another data type in D(S) may have Pop signal on the empty stack. Ground

terms involving nondeterministic operations may also be neither observably equivalent nor

distinguishable by S; for example, the ground term Choose(Insert(Insert(Null, 1), 3)) is

neither observably equivalent nor distinguishable from 3. The above observable

equivalence and distinguishability relations capture the common behavior of data types in

D(S).

3.5.2 Behavioral Completeness

In the definition of behavioral completeness, we must capture the intentional

incompleteness of a specification. If a specification S associates a nontrivial precondition

with an operation, different data types in D(S) can have such an operation behaving

differently on an input not satisfying the precondition. If an operation is specified to have

an option to signal when its input satisfies a condition, different data types in D(S) can have

such an operation signalling the specified exception or terminating normally on an input

satisfying the associated condition. If S specifies a nondeterministic operation, different

data types in D(S) can have such an operation having as much nondeterminism as desired.

This incompleteness in S is intentional. Any other difference in the behavior of data types

in D(S) is unintentional.

The above means that for a specification S to be behaviorally complete, data types

in D(S) having maximal amount of nondeterminism allowed by S must have the same

observable behavior on intended inputs, except that if there is an optional exception

condition specified for an operation, then the operation has the option of signalling or

terminating normally on an input satisfying the boolean condition in the optional exception

condition.

We define three relations on the models in F(S). The partial isomorphic

equivalence relation formalizes the intentional incompleteness introduced due to the
nontrivial preconditions specified for the opeations in S. The isomorphic embeddability

relation formalizes the intentional incompleteness due to the operations specified to have

the option to signal exceptions. Later we combine them to define the partial isomorphic

embeddability on reduced models in F(S). We use the partial isomorphic embeddability



- 103-

relation to define the behavioral completeness of a specification by relating the reduced

models of data types in D(S) having the maximum amount of nondeterminism allowed by

the specification S.

3.5.2.1 Partial Isomorphic Equivalence

Let P0 be a precondition specified for o in S. Let S' be the specification of a

defining type D' E A in S. The partial isomorphic equivalence relation relates models

whose operations have the same behavior on inputs satisfying their preconditions. The

definition is obtained by modifying the definition of isomorphic equivalence (Def. 2.13)

given in Chapter 2. As in Chapter 2, we assume that the domains corresponding to each

D' E A in models A, and A2 are defined by the isomorphically equivalent modelg in F(S')

and that the isomorphic equivalence relation on these models in F(S') induces a bijection

Def. 3.12 Given two algebras Al and A2 in F(S)

A IV ID' A'} EXV V {fI .o E}

A2 =[{VDID'EA', EXV2; {2 f oEa}a

such that for each D' E A, V", and V are the value sets defined by isomorphically

equivalent models Ai and A; in F(S'), where S' is a specification of D', and 41)" V '--+ V '

is a bijection induced due to the isomorphic equivalence of A' and A;, A, and A2 are

isornorphically equivalent w.r. I. I PaI0 a E } (or w.r.t. S) iff there are bijections
4D :V1 , V2 and ExvEXV -4 EXV 2 such that42= { .ID'EA'}{ EXV } has

the following properties:

(i) For each ex. D1 x ... x D, and for every v, of type D1 ... , v of type D,
OEXV (ex(vv .... v)) = eX(4 (v1), ..., 4,) (v)), and

(ii) for each o E fl, o: D1 X... X D --+ W,

for every v, of type DV ..... v of type D, if P0 (v ..... v) = T, then

(a) if neither f nor f2 signals, then

{ 00,(a,( v ... , v)) I = { r;o (v 1).. (v)) }; otherwise,
(b) 6 ('D (v 1),(b 4EV~V'v.....I =d ....O1() 1%(.On 1



-104-

We also call A and A. partially isomorphically equivalent, when { P0 I E t1 I is evident

from the context

The reason for requiring 0D to be a bijection (and not a partial one to one

function) is the assumption that for the case when a constructor is specified to have a

nontrivial precondition, if it terminates normally on an input not satisfying its precondition,

the value returned can be constructed by the constructors using inputs satisfying their

preconditions.

3.5.2.2 Isomorphic Embeddability

In the definition of isomorphic embeddability relation, we want to capture the

intuition that if a specification S associates an optional exception condition with an

operation o, then on an input X satisfying the associated boolean condition O(X), the

function corresponding to a either behaves the same in different algebras in F(S) (i.e., it

either returns the 'same' value or signals the 'same' exception value), or the function

behavior differs in different algebras to the extent that in one algebra, the function signals

the desired exception value and in the other, the function returns the desired normal value.

The condition (iii) in the definition below captures this.

If any constructor a is specified to optionally signal, then the value set of D

defined by one algebra in F(S) may be a subset of the value set of D defined by another

algebra in F(S). (In fact, one value set may have a value that is distinguishable from every
value in the other value set.) That is why in the definition below, we do not require the

mapping relating the value sets of D in two algebras to be a bijection; instead, it is required

to be a one to one partial function.9 However, the mapping must be defined for every

value constructed by the function corresponding to a constructor a using inputs which

satisfy the associated precondition and do not satisfy any boolean condition stated in a

required exception condition or an optional exception condition specified for a. This

constraint is captured in the condition (i) below.

9. That is also the reason for calling the relation isomorphically embcddable.



-105-

Def. 3.13 Given two algebras A, and A2 in F(S) satisfying the requirement about the

domain. corresponding to D' E A stated in Def. 3.12, A2 is isomorphically embeddable in Al
w.r.t. S iff there exist 1-1 partial functions l: V -, V and ,EXv • -- EXV 2 , with

the following properties:

(i) for every set of values v,, . . .. v, for a constructor a, if

(a) PIx,/v 1, ... , x /v] holds,

(b) for every required exception condition specified for a, its boolean condition

Rj[x 1/v1, .... xn/vn does not hold, and

(c) for every optional exception condition specified for ,, its boolean condition

Ox/v. .... , x/vj does not hold,
then,t is defined for every valie f(v i, ... v,
(ii) for every exception name ex: Di x ... x D'm

,EXv (ex(v ,  v')) = ex(1%(v), ...- 'D,(Vm)) if .' l(V) is defined for each
1m i

1 <i <im, and

(iii) for each a E 0, for every set of values v,.... vn such that 1D(v) is defined for each

l<i<n,
(a) if on v1, . v , f 1 signals an exception value ex(vl. ... , v') specified to be

optional by S, then the associated condition O(xl.... . x) holds on v,, ... v, and
r (v1), ... 401) (v.)) either signals ex(4D(vl)' ..... '))(v or returns 41D,(v') for

aDI(I n Im

some V, or

(b) if (v)I(v') .. (Vm) are defined and r2 signals an exception value

ex(O1)i(v l) ..... I (V')) specified to be optional by S on input ..D(V), . OD  (v),
Im I n

then the associated condition O(xi,..., x) holds on D,) (v), .... 4 D(v), and
fr(v ,.... v) either signals ex(v ...., v') or returns v, otherwise,

(c) r r(v, ... ,. } = { ),(. ( , . . , }.
0 rDI(I n

For example, let us modify the model Astk discussed in Subsection 2.3.2 so that

thc function corresponding to Push signals overflow if sequence size is 128, instead of 100,
and call the modified model A' It can be shown Lhat Astk is isomorphicallyStk- t
embeddable in A'tk Astk is 'bigger' than Astk because the value set corresponding to

.. . . . .II . . . .. . .. . . . I I fi l . ..t k. ... . . .. ' . .. .. . . - ' '" : : -



1 "-106-

Stk has more elements in Ast k than in Astk. When optional exception conditions for

constructors are specified to state a least upper bound on the size of the values of the data

type, as in case of the specification of Stk-Int in Figure 3.2, different algebras in F(S) may

have different upper bounds on the size of the values in their value sets.

3.5.2.3 Partial Isomorphic Embeddability

We combine the notions of partial isomorphic equivalence and isomorphic

embeddability to define another relation. The new relation captures both kinds of

intentional incompleteness, due to preconditions as well as due to optional exception

conditions.

De. 3.14 A, is partially isomorphically embeddable w.r.L S in A2 if and only if there exists

a model A' in F(S) such that A' is partially isomorphically equivalent to Al and A' is

isomorphically embeddable in A2 *

3.5.2.4 Definition of Behavioral Completeness

We define behavioral completeness of a specification by relating the reduced

models of the data types having maximal amount of nondeterminism allowed by S in D(S)

using the partial isomorphic embeddability relation. The definition of behavioral

completeness is a single level definition in the sense that a specification S can be

behaviorally complete irrespective of whether a specification of a defining type in S is

behaviorally complete. If the specification of a defining type is behaviorally incomplete,

the incompleteness will be reflected in the semantics of a behaviorally complete S. So, in

the definition, we consider only reduced models in F(S) that have the domains

corresponding to each D' cA defined by the isomorphically equivalent models in F(S'),

where S' is a specification of D'.



- 107 -

DeL. 3.15 A specification S is behaviorally complete iff (i) S is inconsistent, or (ii) for any

two reduced models A, and A2 in F(S) having maximum amount of nondeterminism

allowed by S and whose domains corresponding to each D'E A are defined by the

isomorphically equivalent models in F(S'), where S' is a specification of D', Al is partially

isomorphically embeddable in A2 or vice versa. I

The reasons for having the first case this way in the above definition are that for

an inconsistent S, F(S) = 0, so any relation among algebras in F(S) holds, and that we

want our definitions to be compatible with the definitions of consistency and completeness

in logic, in which an inconsistent theory is complete.

For examples, the specifications of Set-int, Stk-lnt, and Bool in Figures 3.1, 3.2,

and 3.4 respectively can be shown to be behaviorally complete. Note that any specification

not specifying any observers is trivially behaviorally complete. We can show the following:

Thin. 3.3 For a specification S specifying only deterministic operations and not specifying

any precondition or an optional exception condition for an operation, a consistent S is

behaviorally complete iff S precisely specifies a data type D assuming that the specification

S' of every D' E A precisely specifies D'.

Proof The above definition of behavioral completeness reduces under the stated

conditions to requiring that the reduced models in F(S) are isomorphically equivalent. 10

This means that F(S) = MD.

Hence the theorem. I

The behavioral completeness property guarantees that the behavior of the

operations has not been left unintentionally unspecified. However, there are situations

when the behavioral completeness requirement on specifications is restrictive [31, 51]. For

example, consider a modified version of the specification of Set-int in Figure 3.1 in which

Choose is not specified to nondeterministiC. In such a specification also, we do not wish to

10. If a specification does not specify a nontrivial precondition for an operation and also does not specify any
optional exception condition, the partial isomorphic embeddability relation reduces to isomorphic
equivalence.



-108-

commit to the value Choose may return on an nonempty set, so the axiom specifying

Choose is still

Choose(s) E s a T.

This specification is not behaviorally complete. We would want such a specification to be

behaviorally incomplete, as otherwise Choose must be completely specified. The

behavioral completeness requirement is restrictive in such a case because the reduced

algebras in the semantics of the modified specification are not isomorphically equivalent.

For example, in one reduced algebra, the function corresponding to Choose when applied

on { 1, 3 } may return 1, while in another reduced algebra, the corresponding function may

return 3. For most specifications specifying nondeterministic operations, if we modify such

a specification so that an operation specified originally to be nondeterministic is instead

specified to be deterministic, then we would often. want the modified specification to be

behaviorally incomplete.



-109-

3.6 Comparison With Related Works

We compare our specification language with those of Guttag et al. [291 with

extensions proposed in [311, Zilles [77]. the ADJ group [22, 23], Burstall and Goguen [7],

Goguen and Tardo [21], and Nakajima et al. [62]. We first discuss the capabilities of these

specification languages and the approach used to give their semantics. Later, we compare

the semantics of a specification in these languages.

Zilles [771 and ADJ [23] do not allow auxiliary functions in a specification, so their

languages have a limited expressive power. Zilles [77] assumes that the operations of a data

type are detenninistic and that they do not signal exceptions. The ADJ [23] do not allow

nondeterministic operations either; they adopt the simpler approach discussed in

Subsection 2.3.3 for modeling exceptions, and discuss a specification language embodying

this approach. Goguen [20] extended the ADJ method of modeling exceptions, which we

compared with our approach in Subsection 2.3.2. His approach for specifying exceptional

behavior of the operations is different from our approach; it is motivated by the view that

exception values are like normal values (and so they are typed). The exceptional behavior

of the operations is specified using equations. Our language is icher than his language

because of the preconditions and the distinction made between optional exception

conditions and required exception conditions. His semantics of the specification method is

complex.

Burstall-and Goguen's [7] CLEAR language and its extension, the OBJ language,

support hierarchical structure and modularity like our language. However, Burstall and

Goguen have ambitious goals; they are attempting to develop a general purpose

specification language based on algebraic semantics in which the semantics of a

programming language can be specified. So they are forced to introduce complex

mechanisms, for instance, procedures operating on theories, which make the specification

language hard to understand. The category-theoretic semantics of their language is also

complex [30]. Our approach instead has been to concentrate on the data component of

programs, and develop a specification language aid a formalism for data types. Our

semantic method is simpler.

Guttag et al.'s work [29] is the closest to our work. Their language is limited as it

. ...... ... .. ... ... .... . . -j



-110-

cannot specify data types with nondeterministic operations. As was said in Section 3.1, our

specification language is an enrichment of the specification language in [31]. Our

formalism can provide a semantics for their specification language. Our formalism can also

be used to provide a mathematical basis of the AFFIRM system [60, 611. In this sense, our

formalism places their work on a firm basis.

Nakajima et al. [621 specify a data type, as discussed in Chapter 1, as a first order

theory. Their method differs from other methods including our method because they allow

any first order formula to be an axiom in a specification. Auxiliary functions are not.

allowed in a specification. Operations are assumed to be deterministic; they do not signal

exceptions. We have not yet seen the semantics of their specification language. If we

assume that a first order theory is interpreted in a standard way as in Logic [16], the

problems with this approach are discussed in the related work section of the first chapter.

We further comment on their specification method in the next chapter from the point of

view of deducing properties from a specification.

Burstall and Goguen, Nakajima et al., and Guttag [31] can specify a type scheme

(also called a parameterized type) in their languages. Recently, the ADJ group [71] has

given a category theoretic semantics of a parameterized type. Our specification language,

as it is, cannot express a parameterized type. However it should be evident from the

discussion that our formalism as well as specification language can be easily extended to

parameterized types. We discuss these extensions in the last chapter of the thesis.

There are differences between our semantics of a specification, and those of

Zilles, the ADJ group, and Guttag et al. [28], which are motivated by different definitions

of a data -type used in various fonalisms. Zilles and the ADJ assume that values not

specified to be related by the axioms are different, even if they are observably equivalent.

Guttag et al. on the contrary assume that the values are equivalent unless specified to be

different. We have taken a different approach; we consider the axioms as specifying the

observably equivalence relation. Our approach towards the semantics of a specification is

similar to the one adopted in logic; we consider all models of the axioms to be the

semantics of the specification. (Of course, we consider only the algebras satisfying the

minimality property for modeling data types, and rule out nonstandard models.) Our

. . . .. .... .I



- 111 -

semantics thus subsumes Zilles's and the ADJ's definitions, as well as Guttag et al.'s

definition in the following way.

To understand the semantics of a specification in the ADJ group formalism as

well as in Zilles's formalism, we introduce the following definition. As is stated in

Subsection 2.2.6, the models in F(S) can be partially ordered using the onto

homomorphism relation, i.e., A, _ A2 if and only if A, is a homomorphic image of A2.

Def. 3.16 A model A in F(S) is called initial if A is a maximal model with respect to the

homomorphism relation, and A identically satisfies S. I

In an initial model A, VW for each D' E h is a value set defined by an initial model in F(S),

where S' is a specification of D'. Two members in VD) are not the same unless they are

related by the axioms and restrictions. The ADJ group and Zilles define the semantics of a

specification S to be the set of initial models in F(S). Guttag et al., on the other hand,

define the semantics of a specification S to be the set of reduced models in F(S).



-112-

4. Deductive System

In this chapter. we develop a deductive system for abstract data types. The

deductive system embodies general properties of data types which are not explicitly stated

in a specification but assumed in the semantics of the specification language. We construct

a thcory of a data type, which is a collection of properties of the data type, from its

specification. The theory of a data type can be used in reasoning about programs and

designs that LIse the data type in the same way as the properties of natural numbers are used.
in reasoning about programs operating on natuiral numbers. In particular, the correctness

proof of an implementation of a data type with respect to its specification as discussed in

the next chapter, involves the LIse of the theories of its defining types and the theory of its
rep, the data type whose values are used to represent the values of D in the

implementation. We can pose questions about the behavior of a data type and check

whether they can be answered from its specification according to our intentions using the

deductive system. In this sense, constructing the theory of a data type can enhance our

confidence in its specification.

The construction of the theory of a data type from its specification has an

important advantage that the theory does not depend on any particular implementation of

the data type. The correctness criterion used for implementations in Chapter 5 guarantees

that every property.in the theory is satisfied by every correct implementation. We can thus

reason about programs using a data type abstractly without referring to any particular

implementation of the data type. This separation between the theory of a data type and its

implementations via the specification factors the proof process in to two independent parts:

(i) Proof of use of a data type, and (ii) proof of correctness of implementation of a data type

[371. In this chapter, we discuss the first part, we discuss the second part in the next

chapter.

The theory of a data type is constructed hierarchically from its specification, using

the theories of the types used in the specification, just like the specification of a data type is

designed. The design of our specification language has been influenced by the goal that a

specification should not have to state more than what is required and that it be structured



- 113-

in the sense that different components of the data type behavior are separately specified.

To construct the theory of a data type from its specification, we combine these components.

For instance, as is discussed in the previous chapter, an axiom in the axioms component has

a restricted interpretation: A variable of type D' in the axiom cannot be freely substituted;

instead, the substitution should be such that the input to every operation symbol satisfies its

precondition as specified by the restrictions component, and no operation invocation

should signal. We first construct the unrestricted axioms from the restricted axioms in the

axioms component of a specification using the restrictions; these unrestricted axioms are

used to construct the theory. Henceforth, we refer to a (restricted) axiom in the axioms

component of a specification as a formula and to an unrestricted axiom as an axiom to

avoid confiusion.

The proposed deductive system is used to prove properties manually. We have

not investigated the possibilities of automating the deductive system, but we relate our

work to Musser's work [60, 611 on automating the proof theory of data types from their

algebraic specifications.

Instead of discussing the complete deductive system and the construction of a

theory from a specification specifying nondeterministic operations and operations

exhibiting exceptional behavior in a single shot, we do so step by step. We first discuss the

theory of a data type with deterministic operations and without considering their

exceptional behavior. We then incorporate the exceptional behavior of data types into

their theory. Finally, we discuss data types with nondeterministic operations to exhibit the

extra machinery needed for introducing nondetenninism.

For specifications specifying only deterministic operations, we discuss various

subtheories, namely, the equational subtheory, distinguishability subtheory, inductive

subtheory, constructed using different fragments of the deductive system. We define three

structural properties of a specification, namely, sufficient completeness, well definedness,

and completeness. Checking for these properties for a specification is a step towards

ensuring the correctness of the specification. We precisely state the sufficient completeness

property defined by Guttag and Horning [28] for a restricted set of specifications and

extend it to specifications in our specification language. This property requires that the



behavior of the observers on their intended inputs can be completely determined from the

specification by purely equlational reasoning. We relate this property to the behavioral

completeness property discussed in the previous chapter, which is model theoretic and

which requires that the specification completely specify the behavior of the observers on

intended inputs. Recall that the behavioral completeness property does not say anything

about what can be deduced from the specification. We show that Sufficient completeness is

stronger than behavioral completeness.

The completeness property is even stronger than the sufficient completeness

property, since in addition to the requirement that the behavior of the observers can be

deduced on any intended input by equational reasoning, it also requires that the

equivalence of the observable effect of the constructors on intended inpu~ts can be deduced

from the specification by equational reasoning.

The well defmnedness property constrains that a specification be modular in the

sense that it preserve the specifications of defining types and auxiliary types in it. This

property is stronger than the consistency property.

In the last section, we define a stronger equlivalence on specifications than the

equivalence defined in Section 3.3. The stronger equivalence of specifications requires that

not only the two specifications have the same semantics, but t heir theories must also be the

same. I



-115-

4.1 Preliminaries

A data type can have many different but equivalent specifications (see Section 3.3

and Section 4.5). These specifications may differ because

(i) they may specify the properties of constructors to different extents,

(ii) the properties of the operations arc specified in different ways, and

(iii) they may use different sets of auxiliary functions.

Theories constructed from different equivalent specifications can be different, as will be

clear from the following discussion. Unless stated otherwise, we assume that a data type

has a single fixed specification; in the last section of the chapter, we discuss theories

constructed firom different but equivalent specifications of a data type.

If a specification S specifies only a single data type D, then the theory constructed

from S is the theory of D. If S specifies a set of related data types, then the theory

constructed from S is the theory of the set of related data types. The theory constructed

from S consists of properties characterizing the behavior of the algebras in F(S), the

semantics of S. Let Th(S) stand for the theory constructed from S.

The deductive system uses multi-sorted (or many sorted) first order predicate

calculus with identity [16] as the underlying logic. Though a first order theory cannot

completely characterize the 'infinite' models in F(S), we prefer first order logic over second

order logic because of the following reasons:

(i) First order logic is well studied, and is better understood than second order logic,

(ii) most of the programming logics developed for reasoning about the control structures

of programming languages are first order,

(iii) the recent work of Cartwright and McCarthy [8] has established that even the

termination proof, which was believed to employ second order reasoning, can be

adequately done in first order logic,

(iv) most of the work in automatic verification uses first order logic as the underlying

basis, and

(v) we believe that the most of the interesting properties of programs can be expressed in

first order logic.

Multi-sorted logic is more convenient than single-sorted logic as it avoids the use of type



-116-

predicates, which must be introduced in a single-sorted logic to differentiate among terms

of different types. We use an induction rule having infinitely many premises which is some

what unusual; the proofs using this rule are infinitary. We interpret the formulas in Th(S)

in the algebras in F(S); we do not consider uncountable structures because they are not

type algebras and so they are of no interest.

As was discussed in the previous chapter, a formula is interpreted in a type

algebra in the same way as a formula in a structure in Logic [16], except that the symbol -

is interpreted as the observable equivalence relation (see the definition in Sections 2.2 and

2.3) on a domain instead of the identity relation. Because the observable equivalence

relation is an equivalence relation and is preserved by every function in a type algebra, the

standard rules for identity hold (i.e., the rtles for identity are sound under this

interpretation).

We now discuss the structure of formulas expressing properties of the models in

F(S). Following Enderton [161, we define the language of Th(S) as the set of nonlogical

symbols; the nonlogical symbols are used with the logical symbols to construct formulas. 1

Let L(S) stand for the language of Th(S). Instead of defining the complete language of

Th(S) here, we introduce it incrementally. We discuss here L(S) for a specification neither

specifying nondeterministic operations nor the exceptional behavior of the operations.

U(S) includes the operation symbols of D specified by S as well as the auxiliary function

symbols used in S. Since Th(S) is constructed using the theories of the defining types and

the theories of the auxiliary types used in S, (S) includes L(S'), where S' is a specification

of a data type D', for each D' E A U At.

In Section 4.3 on specifications specifying exceptional behavior of the operations,

we include the exception names in L(S). In Section 4.4 on specifications specifying

nondeterministic operations, L(S) includes additional symbols needed for expressing

1. A symbol (or an axiom or a nile of inference) is called nonlogical if it is specific to a particular domain of
discourse whose theory is being constructed. 'Ibis is in contrast to logical symbols, which are determined by
the underlying logic used to develop the theory. For instance, a logical axiom characterizes the logical
reasoning available in the underlying logic, whereas a nonlogical axiom characterizes a property about the
domain of discourse.



-117-

properties about nondeterministic operations.

Terms of various types can be constructed using the symbols in L(S) and variables

of various types as discussed in the previous chapter. An atomic formula is an equation of

the form 'e, = e,', where e, and e2 are terms of the same type. Compound formulas are

constructed from atomic formulas using the standard rules of construction for first order

predicate calculus with the help of logical symbols.

We consider a boolean term as a term rather than an atomic formula; in this

sense, we adopt a uniform view about the symbols in US), considering each as a function

symbol. This view is especially convenient when we incorporate tile exceptional behavior

of the operations. 1,1 case we use a boolean term b as a formula, b is considered as the

abbreviation for the equation 'b - T.'
Recall that 'e= if b then e, is an abbreviation for 'e, f -tlhen-else(b, e2, e,)' and

e, = if b then e2 else e3' stands for the following two conditional equations

e =_ if b then e2,'

e = if - b then e3 '

In the simple case when exceptional behavior is not considered, 'ei = if b then e2' is

equivalent to '(b - T) =. (e - e2).' When we incorporate exceptional behavior, the above

equivalence does not always hold, because b could possibly signal an exception. However,

if b is guaranteed not to signal, then the above equivalence holds in that case also.

We use the abbreviation 'e, 36 e2' for the formula '- (V x .. xn) [I e ],'

where x 1 ... xn are the only variables in e, and e2. Note that if e, and e2 are ground terms,

then "e, 4 e2' is equivalent to " (e1 - e2).' In fact, it is easy to see that
(V x11 ..... xn ) [- e, =-e2_ ]=(e e e2).

Only a subset of Th(S) is useful in reasoning about programs and designs using D.

This subset consists of formulas in Th(S) expressed using only the operation symbols.

Formulas expressed using auxiliary functions are not directly useful because the auxiliary

functions are not available to the users of the data type(s) being specified, but these

formulas help in proving formulas without auxiliary functions. The correctness criterion

for implementations with respect to a specification S discussed in the next chapter does not

require a correct implementation to include implementations of auxiliary functions used in



-118-

S. Even if an auxiliary function is implemented, it is not available to the users of a data

type.

Let (D) stand for the language of a data type D, which is a subset of L(S)

consisting only of the operation symbols. L(S) - 1(D) is then the set of auxiliary functions

used in specifications of various data types. Let Th(D) stand for the subset of Th(S)
consisting of formulas in Th(S) expressed using the nonlogical symbols in L(D). We are

primarily interested in formulas in Th(D). The correctness criterion used in the next

chapter ensures that Th(D) holds for all correct implementations with respect to S. Th(D).
serves as the interface between programs using D and the correct implementations of D.

Note that Th(D) does not include those nonlogical axioms of Th(S) which are expressed

using auxiliary functions.



-119-

I ri 4.2 Theory of Data Types without Nondeterminism and without

Exceptional Behavior

We start with the simple case of specifications that do not specify

nondeterministic operations and the exceptional behavior of the operations. The

restrictions component of suich a specification may specify the nontrivial preconditions for

the operations. For illustration, we modify the data type Set-lnt so that Choose is

deterministic-, let Set-tnt' stand for the modified Set-tnt. The specification of Set-tnt' is

given in Figure 4., which is obtained by modifying the specification of Set-hIt given in

Figure 3.1. Thle syntactic specification of the operation Choose does not have thle identifier

nonclerininislic. Instead of the requlired exception condition for Choose on the empty set,

we specify '- #(s) = 0' as its precondition in the restriction component of the specification

of Set-I t'.

We first discuss how to construct u~nrestr'icted nonlogical axioms of Th(S) from

Figure 4.l. Specificat Ion or Set-tnt'

Operafions

Null -. Set-nt' as 0
Insert Set-Int' X Int - Set-nt'
Remove Set-Int' X mnt *- Set-nt'
Has Set. mt X mnt - 6001 as x2 C x,
Size Set-Int' - mnt as # (x1)
Choose Set-Int' -4 mt

Resirictions

1'r(Choose(s)) ((s) =0)

Axioms

1. Remove(0, I) S0
2. Remove(lnsert(s, ii), i2) =-if il i2 then Remove(s, il) else Insert(Remove(s, i2), il)
3. i E 0 =-F
4. il C Insert(s, i2) =-if il i 2 then T else i E s
5. # (0) =-0
6. #(lnsert(s, 0)= it iC E then # (s) else # (s) + 1
7. Choose(s) E s MT



-120-

the formulas in the axioms component and the preconditions specified in S. We then

discuss how to construct Th(S) from the nonlogical axioms thus obtained. We do so step

by step exhibiting the power of various fragments of the deductive system. This will also
help in investigating how easily these Fragments can be automated. We first discuss a

simple but usefuil subset of Th(S), called the equational subtheory and written as EQ(S).

Formulas in EQ(S) are proved using the rules of = and the substitution rule of v. Most of

the work on developing the proof theory of data types from their algebraic specifications

has focused on this subtheory [23, 71, 7, 21, 29].

We discuss later a richer subtheory, called the distinguishabilij sLbtheory and
written as DS(S), having inequalities 'e, 4 e2' in addition to equations. The inability to

prove an inequality has been a major limitation of the recent works on proof theories based

on algebra specifications. For instance, both in Zilles's method as well as in ADJ's method,

two terms e, and e2 are unequal, i.e., 'e, 3 e2' is provable, if and only if'e, - e2' is not in the

equational subtheory, so the proof of inequality becomes meta. Zilles [761 recognizes this

limitation and suggests also using inequalities as axioms. In our deductive system,

inequalities can be proved from equations by the method of proof by contradiction. We

have this advantage because we view two abstract values (i.e., ground terms) of a data type

to be distinguishable (so unequal) if and only if a sequence of operations can distinguish

them. This is in contrast to the view taken by the ADJ group and Zilles that two abstract

values are distinguishable if and only if they are not specified to be equal.

We later include an induction rule which captures the minimality property of a

data type. This rule is 'infinite' and is derived from the syntactic specifications of the

operations and the restrictions components of the specification. More properties of a data

type can be proved using the induction rule than without it. We discuss how the rule is

used to prove other rules using the nonlogical axioms derived from the specification, which

simplify the proof of properties of the data type. The subset of equations and inequalities

provable using the induction rule and the rulqs of the distinguishability subtheory is called

the inductivesubtheory and written as IND(S).

We finally construct the full theory Th(S) using the whole machinery of first

order predicate calculus and the 'infinite' induction rule. We demonstrate the use of Th(S)



-121-

in verifying properties of programs. Every subtheory (as well as the full theory Th(S)) is

constructed hierarchically from the corresponding subtheory (or the full theory)
constructed from the specifications of the defining types and the auxiliary types used in S.
For instance, IND(S) is constructed from INI)(S'), where S' is a specification of

D'EAUAt.

In the last subsection, we define sufficient completeness, completeness, and well

definedness properties of a specification, and relate them to behavioral completeness and

consistency properties discussed in Section 3.5.

4.2.1 Derivation of Nonlogical Axioms

The unrestricted nonlogical axioms for a specification S can be derived in a

straightforward way. If S specifies a nontrivial precondition for some operations, then the

nonlogical axioms are generally conditional equations. Let PC, stand for a conjunction of

conditions of the form P(el ..... e) = T' for every occurrence of a having the input

e,,..., e in e. If an equation 'e = e2 is in the axio'is component of S, the corresponding

nonlogical axiom of Th(S) is the formula

(PCeA PCe2 ) ="(ee).

For example, the formula

Choose(s) E s - T

has an occurrence of the operation Choose, which is specified to have the nontrivial

precondition, so the corresponding unrestricted nonlogical axiom is

(" #(s) = 0 - T) =: (Choose(s) E s a T).

If a formula in the axioms component does not have any operation specified to

have a nontrivial precondition, then the formula itself serves as the nonlogical axiom. For

example, the formula

#(insert(s,i)) - if i E s then #(s) else #(s) + I

itself serves as a nonlogical axiom.

For any restricted quantifier-free formula f, the corresponding mnrestricted

formula is* P =r 9", where PC is a conjunction of the formulas PCe. for every term e, in

the formula .



-122-

4.2.2 Equational Subtheory

The equational subtheory EQ(S) consists of equations derived from the

nonlogical axioms of S. An equation 'e, M e2' is in EQ(S) if and only if it is provable from
the nonlogical axioms of S and EQ(S'), where S' is a specification of D', for each

D'E a U At , using the four rules of -, namely,

(i) reflexivity,

(ii) symmetry,

(iii) transitivity,

(iv) substitution property of every function symbol,

and,

(v) the substitution rule for the universal quantifier v (i.e., substituting an appropriate

term for every occurrence of a free variable in a nonlogical axiom).

All five of the above rules are not necessary; some of them can be derived from the others

1161. As an illustration, we give a proof of the equation "#(Inser1(Insert(Null, i), i)) = I.' in
Figure 4.2.

EQ(S) defines a relation on ground terms of different types: let EQl) , stand for

this relation on ground terms of type D'. For any ground terms e and e2, <e, e2> E EQD if

and only if 'e, e2,', EQ(S).

If the nonlogical axioms are equations (possibly using if-then-else functions), they

can be considered as unidirectional rewrite rules by defining an appropriate ordering on

terms. If a decision procedure for EQ(S) exists (i.e., the relation EQD, for each

D' E A U At U {D} is decidable), then it is often possible to generate a convergent set of
rewrite rules from the nonlogical axioms using the Knuth-Bendix algorithm [44], which

Figure 4.2. Proof of'#(Insert(Inserl(Null, i), i)) - 1'

I. i E Insert(Null, i) =-T Substitution in Axiom 4 of Set-Int' and the thcorcm of Int.
2. #(Inscrt(nscrt(Null. i), i)) - #(Insct(Null, i)) Step 1, substitution in Axiom 6 of Set-lnt'
3. = #(Null) + 1 Axiom 3, substitution in axiom 6 of Set-Int', and transitivity.
4. M 0 + 1 Axiom 5 of Set-Int.
5. -1 Theorem of Int.



-123-

constitutes the decision procedure for EQ(S). The AFFIRM system [60] is designed in part

around this result. Though nonlogical axioms using if-then-else functions have been

studied [60, 21, 5], there appears to be some difficulties in using the Knuth-Bendix

algorithm on them [611.

For automating the process of proving properties from the nonlogical axioms of S

using the above five rules, it may be helpful to view a formula of the form

PC * (e, - e2),

where PC is a conjunction 'b, = T A... A b = T' as the formula
n

e, _=irb  A  ... A b  (liene 2,

as the two formulas are equivalent and the second formula can be considered as a rewrite

rule. For example,

(~ #(s) = 0 T) = Choose(s) E s a T

can be viewed as

Choose(s) E s ir - #(s) = 0 then T.

4.2.3 Distingu.shability Subtheory

The distinguishability subtheory DS(S) is richer than EQ(S); it has two kinds of

formulas: (i) 'e - e2,' and (ii) 'el i e2.' Our approach for proving inequalities is simple; it is

based on the definition of distinguishability discussed in Sections2.2 and 2.3. The

distinguishability theory of Booi serves as the basis; since 'T i F' is a formula in the

specification of Bool, 'T 36 F' E DS(Bool). (Recall that only the specification of Bool

includes an inequality as an axiom.) T 4 F' obviously holds in every model of Bool. This

inequality is used to prove inequalities of terms of type D by reductio ad absurdum (proof

by contradiction); this is the sixth logical rule, besides the five rules discussed in the

previous subsection, which is used to construct the subtheory DS(S). We of course use

inequalities in DS(S'), where S' is a specification of D' E A U At.

Given two terms e, and e2, we prove 'e, 6 e2' as follows:

We assume on the contrary that'e, - e2;'

we then derive 'e _ e', where 'ej i e' is already provable, i.e., either

ei 4 ej E DS(S'), or' ei e; E DS(S).



-124-

We illustrate the above rule to prove the inequality 'Null 3- Insert(s, i) in Figure 4.3. For

any ground terms e, and e2, the formula 'e, . e2' interprets in a model in F(S) to whether

the interpretation of e, is distinguishable from the interpretation of e2.

The method of proof by contradiction can be integrated into a rewrite rules

system like AFFIRM. If an inequality 'el 9 e2' is to be proved, we assume 'e, - e2' as an

axiom and add it to the set of nonlogical axioms. We get the rewrite rules corresponding

to the new set of axioms and run them to check whether a contradiction, i.e., one of the

rules 'T-,F' and 'F-+T' or 'e-, e,' is generated, where the inequality 'e; e;' is already.

proved.

4.2.4 Inductive Subtheory

The subtheory DS(S) is still not rich enough because there are many useful

equational formulas which hold for every data type in D(S), but cannot be proved using the

logical rules of DS(S). For example, the equation

Has(Remove(s, i), i) - F

cannot be proved because

(i) there is no nonlogical axiom directly expressing the behavior of Has on a set argument

having the structure Remove(s, i), and

(ii) Remove(s, i) is not equivalent to Null or an expression of the form Insert(s', i) unless

some conditions are placed on s.

But, 'las(Reniove(s, i), i) - F holds in every model in F(Set-lnt'). Even if we use the

whole deductive system of first order predicate calculus, this formula cannot be proved

from the nonlogical axioms of Set-Int'.

Figure 4.3. Proof of Null A Insert(s, )

To prove Null A Insert (s, i)
assume Null Insert (s, i)
Has (Null, i) Has(Insert(s, i), i), substitution property of Has
F - T, the axioms 3 and 4 of Set-Int',
which is a contradiction.
so Null A Inscrt(s, i) E DS(Sct-lnt).



- 125-

The above limitation is due to the fact that the minimality property of data types,

which is captured in the definition of a type algebra, is neither captured in the underlying

logic nor expressed as a nonlogical axiom (see the discussion of the minimality property in

Section 2.1). We discuss below an induction rule which captures this property. The rule

can be constructed from the syntactic specifications of the operations in S. We compare

our rule with other similar rules proposed in the literature, and demonstrate the inadequacy

of some of these rules. We discuss how the 'infinite' rule can be used in proofs. For better

exposition, we first assume that no constructor of D is specified to have a nontrivial

precondition by S; we later relax this restriction.

4.2.4.1 Infinite Induction Rule

Def. 4.1 A ground term e is called a constructor ground term if e is expressed only using

constructor symbols. I

(t) Induction Rule

Given a formula (x) with a free variable xof type D.

For every constructor ground term e of type D, 4[x/el I- (V x) O(x).

The above inference rule is infinitary, as there are usually infinitely many constructor

ground terms of type D and so, the nile requires infinitely many premises. The notion of a

proof is infinitary whenever the induction ride is used. Intuitively, the above rule states

that if a formula 4(x) holds in every case when a value of type D is substituted for x, then

we can deduce the formula '(V x) *(x).' It is easy to see that the above rule is sound

because every type algebra by definition has the minimality property, which states that

every value of D is represented by some constructor ground term of type D. It is sufficient

to consider only constructor ground terms because these represent every value in a type

algebra.

Burstall and Goguen [71 also realized the limitation of the proof theory based on



-126-

the rules of = 2 They introduced the induce operator on theories; the induced theory is

equivalent to the original theory with the above induction rule. The above induction rule is

a generalization of the structural induction rule of Burstall [6]. The structural induction

rule is based on identifying a minimal set of constructors (instead of all constructors) which

generates the values of D and has the property that every finite sequence of constructors in

the subset generates a distinguishable value. To our knowledge, Wegbreit and Spitzen 1721
were the first to generalize the structural induction nile, but they presented it informally.

The data induction rule of Guttag et al. 129] is the same as the induction rule of Wegbreit

and Spitzen. Recently, Musser [61] has suggested a formalization similar to our

formulation of the rule.

4.2.4.2 Rationale for an Infinite Induction Rule

Below, we discuss the rationale for using an infinite rule to capture the

minimality property of a data type. We demonstrate the inadequacy of an induction
scheme seemingl) suggested by Wegbreit and Spitzen [72], Guttag et al. [29], and Nakajima

et al. [62]. For illustration, we use a simple version of the data type natural number,

denoted by N2. N2 has four operations: 0, the constant zero; S, the successor operation; P,
the predecessor operation; and, =, the equality operation. Its specification is given in

Figure 4.4. The constructor P is derived in the sense that the values returned by P can be

constructed using 0 and S. We would like to prove from the nonlogical axioms of N2 and

the induction nile, the following normal form lemma in the full theory:
(1) (V X) [XM=0 V (3y)[X_= S(y)ll

In general, we would like to have in Th(N 2) the scheme

(2) (4(O) A (V x) [ 4x) =* (S(x)) 1) = (V x) -(x),

where -o is a first order formula with at least one free variable.

If we express the minimality property of N2 with the following scheme:

(3) (0(0) A (V x) [ O(x) = (O(P(x)) A *(S(x))] ) (v x) *(x),

2. However. Al)] [711 do not seem to agree that properties provable using the induction rule are relevant.



V

-127-

i

Figure 4.4. Specification of Data Type N2

Operations

G : --- 1M2

S : N2 -N 2
P : N2- N2

: N2 XN 2 --.Bo0

Axioms

pO) 0 0
P(S(x)) - x
x = x-=T
X = Y=-Y = X
S(x) = 0 a F
S(x) = S(y) -x y

where -0 is a first order formuila, we can neither prove (1) nor (2). This is because there are

nonstandard models of the nonlogical axioms given in Figure 4.4 and the scheme (3), in

which the scheme of formulas (2) arid/or the forrnt:ia (1) do not hold. Figure 4.5 is one

such model in which the nonlogical axioms as well as the scheme (3) holds but the formula

scheme (2) does not hold. The model has an infinite chain going from a constant symbol c

in both directions in addition to the chain of natural numbers, and there is a unary

predicate symbol M whose interpretation in the model is the predicate which is false on all

constants on the negative side of c, and true otherwise. The figure shows the values in the

models on which the interpretation of M is false.

The scheme (3) does not capture the property that the operation P when applied

on any natural number will hit in finitely many steps either 0 or a number that behaves like

0 (in nonstandard models). This property is needed to derive (2) or (1).

It should be obvious that the scheme (2) as well as the formula (1) hold in every

model in F(N2). Formulas of the kind (2) and the formula (1) are very useful in proving

properties of programs using N2. For example, using the formula scheme (2), the proof by

induction amounts to checking for the basis condition and a single case in the inductive

step, where as (3) requires two cases in the inductive step.

We would like the induction rule to be constructible from the syntactic



-128-

Figure 4.5. A Nonstandard Model of the Axioms in N with the Scheme (3)

S S S
0 1-- -- 2 - -- 3 -->-- 4 - - .

P P P

S S S S S
..->-c-2-- - -I - -c- - c + I -- c + 2...

P P P P P

F F

specification so that the rule does not have to be stated explicitly for every data type in its

specification. In addition, the induction rule should be st'ong enough so that, for example,

the formula scheme like (2) and the normal form theorem (1) can be derived in case of N2.
The above discussion shows that the scheme (3) is not powerful enough. However, the

infinite induction rule (t) for N2 does the job. It can be shown that the scheme (2) and the

formula (1) are derivable from that rule.
Another alternative for characterizing the minimality property is to use

multisorted second order predicate calculus as the underlying logic and express the

minimality property as a second order formula. But, this approach is not attractive because

of the reasons discussed in the first section.

4.2.4.3 Use of the Induction Rule

For using the induction rule (t), we must establish infinitely many premises. This

can be done by imposing a partial ordering on the set of constructor ground terms and

using induction on ground terms. We discuss below a technique for doing this. We start

with an instantiation of this technique which uses the structure of the ground terms; this

method is known as the structural induction 16]. We show that
(i) for each basic constructor a D x... x D -, D, which does not take any argument

of type D, O[x/a(e .... , e)] is provable, and

(ii) for every other constructor aE 0, O[x/a(e, ..... cn)] is provable assuming 4[x/ei] for

k ,~., -- "- -



- 129 -

every D. = D.

However, there are situations when the structural induction is not useful or convenient;

instead, a different partial ordering on ground terms is preferable.

We present below a generalized technique. Let G stand for the set of all

constructor ground terms of type D. We can define an ordering relation (non-reflexive,

antisymmetric, and transitive) < on G such that (G, <) satisfies the ninimum condition.

Defining < on G gives a generalized (Noetherian) induction rule [101 on G.

Der. 4.2 (G, <) satisfies the minimum condition iff for every nonempty subset A of G, A has

a minimal element with respect to <. 3 1

Generalized Induction Rule:
If for every e E G such that for every element e' E G that is < e, ,O[x/e, = 4O[x/e],

then (V e E G) ,[x/el.

So, in order to establish the infinitely many premises of the 'infinite' induction rule (t), we

define a partial ordering < on the constructor ground terms in C such that (G, <) has the

minimum condition and use the generalized induction rule.

Using the nonlogical axioms of S, one can identify a subset C of G such that for

every constructor ground term e E G, there is a ground term e' in C such that

e =_ e" E EQ(S). We can then simplify the induction rule using the following rule of first

order predicate calculus:

(e- e') I- Ox/d Olx/l
We need to show only that for every ground term e E C, ,[x/e. For example, it can be

shown in case of Bool, that for every boolean ground term e, either 'e = T" EQ(Bool) or
.e- F' E EQ(Bool). So to prove a property having a free variable of type Bool by

induction, it suffices to show that the property holds in case of T and F.

Let us consider the example of Set-tnt'. The induction rule (t) for Set-tnt' is:

3. The property of a set A satisfying the minimum condition with respect to an ordering relation < is related
to the welfiundedness property of A with respect to <. It can be shown that A is well founded with respect to
< if and only if(A, <) satisfies the minimum condition.



-I

-130-

For every constructor ground term e of type Set-lnt', 4[x/ej -- (V x) (x).

The following theorem establishes that the constructor Remove is derived in the sense that

it does not construct any value of Set-Int' distinguishable from the values constructed by

Null and Insert.

Thin. 4.1 Every constructor ground term e of type Set-int' is equivalent by equational

reasoning to a ground term e' not having any occurrence of Remove, i.e., the equation

e-e'" E EQ(Set-int').

Proof Using induction on the number of Remove (and subsequently the number of Insert)

in a constructor ground term, we show the above with the help of the axioms I and 2 of
Set-Int'. For details, see Appendix II1. I

Using this theorem, we get a simpler induction rule for Set-Int':
(4) For every constructor ground term e of type Set-lnt' having only the occurrences of

Null and Insert, -,[x/e f- (V x) O(x).

We can define an ordering generated by the following relation on ground terms

constructed using Null and Insert.

Null < Insert(x, J), and x < Insert(x, i)

for any constructor ground term x and integer constructor ground term i. Using the

induction rule (4), we can prove for any formula 4,,

(5) (lOx/NullJ A (V x) [ O(x) (V i) ,b(Insert(x, )) () (V x) 4(x).
We also get the following normal form theorem for Set-Jnt' using (5)

(V s) [ s - Null() V (3 s, i') s _ insert(s', i') ].

Note that the above formula is different from Theorem 4.1. (The above formula is not in

IND(S) because of the use of the existential quantifier 3 in it, but it is in Th(S) as discussed

later.) Theorem 4.1 cannot be expressed in first order predicate calculus. Using the

scheme (5) and the nonlogical axioms of Set-lnt', we prove '1las(Remove(s, i), i) - F' in

Figure 4.6. Recall that this formula could not be proved in DS(Set-Int').

The inductive subtheory IND(S) consists of equations and inequalities, and is

defined to be the set of formulas derived from the nonlogical axioms using the six rules

discussed in the last subsection (meaning DS(S) C IND(S)) and the infinite induction rule



-131-

Figure 4.6. Proof of' las(Rcnove(s, i), i)- F"

We use thc frm ula schemc (5) above.
Basis: llas(Removc(Null, i). i) = Has(Null, i) - F Axioms 1, 3.
Induciive Step Assume Ilas(Removc(s, i), i) F,

to show (V il) [ Has(Rcmove(Insert(s, il), i), i) = F]

Case I: i = il
las(Rcmovc(lnscrt(s, il), i), i) Has(Removc(s, i), i) F, Axiom 2, and the assumption.

Case 2: (i = il)
HasORemove(Inscrt(s. il). i), i) Has(Insert(Remove(s, i), il). i) Axiom 2.

I las(Remove(s, i), i) = F Axiom 4 and the assumption.

Using the scheme (5). we get Iias(Remove(s, i). i) = F.

(). We later discuss the conditions tinder which formulas in IND(S) can be proved using

the Knuth-Bendix algorithm (Subsection 4.2.7).

4.2.4.4 Specifications with Nontrivial Preconditions for Constructors

The induction rule (t) is also applicable to specifications specifying nontrivial

preconditions for the constructors as it captures a general property of data types and not a

property of specifications. It can be simplified depending on the semantics used for a

constructor o on inputs not satisfying its precondition.

If nontrivial preconditions are specified for constructors, we are interested in

constructor ground terms in which the input to every constructor invocation satisfies the

specified precondition. This is so because a constructor is not likely to be invoked with an

input not satisfying the specified precondition. Even if the constructor is invoked on such

an input, we are not interested in its behavior.

Def. 4.3 A constructor ground term e is called legal if and only if (i) e does not have any

occurrence of an auxiliary function, and (ii) for every subterm of e of the form
= o(e, .. . en), where a is a constructor, 'Po(et I e) - T' EQ(S). I

The restriction that P(e 1 .... e,) - T' E EQ(S) is for convenience; we could have

required the formula to be in Th(S), the full theory constructed from S. (Recall that Pq(X)

..... .. ... ..... .. " -



-132-

is a boolean term without involving any quantifier.) We are mostly interested in formulas

involving legal ground terms.

Assuming the semantics used in Chapter 3 (i.e., on an input not satisfying its

precondition, a returns a value of D constructible by the constructors of D) using inputs

Figure 4.7. Specification or StklInt

Stk-Int as Sik

Operations

Null :- Stk
Push :Slk X nt - Stk

- overtlow(Stk, hIt)
Pop :Stk -. Stk
Top :Stk -. t

-no-topO

Replace :Sik X mnt --+ Stk
Empty : 1k --. Bool

Auxiliary Functions

Size :Stk --i mt as # (4

Restrictions

Pre(Pop(s)) : Empty(s)
Pre(Replace(s, i)) ::-Empty(s)

Empty(s) =:-Top(s) signals no-topO
Push(s, 0) signals ove rfilow(s, 0): # (s)> 100

Axioms

1. Pop(Push(s, 1)) s
2. Top(Push(s, 1)) 1
3. Replace(s, i) Push(Pop(s), 1)
4. Empty(NulI) T
5. Empty(Push(s, )a F
6. # (Null) a0
7. # (Push(s,i)) = # (s) +



- 133 -

satisfying their preconditions4 ), the induction rule (t) gets simplified to

for ever legal constructor ground term cof type D, 4[x/e] I-- (v x) 4,(x).

This is so because every constructor ground term that is not legal is equivalent to some legal

constructor ground term by the above assumption.

If the above assumption about the behavior of a is dropped and nothing is

assumed about its behavior on inputs not satisfying the preconditions, then we have

for every legal constructor ground term e of type D, D[x/e H

(V x)( V (3 x. x. )x - (x ,... x. ) A P (x . x. T )

where n. } is the set of constructors of D. The condition in the matrix of the

consequence of the above rule ensures that x ranges over values serving as the

interpretations of the legal ground terms of D. This is the strongest consequence we can

have because the interpretation of illegal constructor ground terms is not known. For

example, if we drop the restrictions in the specification of Sik-Int repeated in Figure 4.7

specifying the exceptional behavior of the operations, the modified specification associates

preconditions with the constructors Pop and Replace. The induction rule would then be

for every legal constructor ground term e of type Stk-lnt, ,D[s/e] i--

(v s) ( s - Null() V (3 s', i') s - Push(s', i') V (3 s') [ Empty(s') = T A s - Pop(s')]

V (3 s', i') [ - Empty(s') = T A s = Replace(s', i') ]1) O(s).

We have discussed in Chapter 3 the reasons for assuming that a constructor a on

an input not satisfying i.: precondition can either signal an exception or return a value

constructible by the constructors using inputs satisfying their preconditions. An additional

reason for this assumption is that otherwise the induction rule gets complex, as should be

evident from the above discussion.

4. a can also signal on such an input: since we are consideriiig data types without exceptional behavior, this
choice is ruled out.



- 134 -

4.2.5 The Full Theory

In proving properties of programs, one often uses properties of data types other

than equations and inequalities. For example, w: often need to prove properties of the

form '(e,, -- e21 A ... A e -e 2 , ) V, -f 2).' Or, we may need a formula involving

existential quantifiers. For example, consider the union procedure on sets of integers

written in a CLU-like language and given in Figure 4.8. The integer variable i inside the

loop defines the range (-i+ 1, i-I) of integers which have been checked to be members of

the first argument and if so, have been inserted into the result being computed. The

variable i is incremented every time the loop is executed. To prove the termination of

union, we need to show that a set is either empty or there is an integer k such that every

element of the set lies in the range (-k, k). The following formula expresses this property:

(6) (v s) [s = Null V (3 k) (vj)[llas(s,j)=T (j k Aj> -k)1

To prove such properties, we need the whole machinery of first order predicate calculus

with identity. The proof of (6) is given in Figure 4.9.

The full theory Th(S) is the set of formulas derivable from the nonlogical axioms

of S and Th(S'), where S' is a specification of a defining type or an auxiliary type used in S,

using the logical axioms and rules of inference of multi-sorted first order predicate calculus

Figure 4.8. Procedure Union - I

union = proc(sl, s2 : Set-Int') returns (Set-Jnt')
i: nt := 0
rl : Set-lnt = sl
r2: Set-Int':= s2
while -Set-lnt'$Sizc(rl) = 0do
ifSet-lnt'$Has(rl, i) then rl = Set-Int'$Removc(rl, i)

r2 : Set-lnt'$nscrt(r2, i)
end
if Set- Int'$1las(rl, -i) then rl = Set- Int'$Rcmove(rl, -i)

r2: = Se-lnt'$1nsert(r2, -i)
end
i:= i+l

end
return (r2)
end union



-135-

Figure 4.9. Proof of the Formula (6)-ITo prove (V s) I s - Nul() V(3 i) (V j) [Has(s, j) Tr:: (j <5 i Aj -i)IJI
Using the scheme (5).

* Basis 0b(Null)(=>T
Inductive Step Assume 4)(s), to show (V k) 0o(lnsert(s, k))

Since 0)(s) t- T, we have two cases,
Caise I s= Null()

0(inscrt(Null, k)) r- , because i is Ikl, the absolute of k

Subcase I - i < k < i.
itselfserves to prove that 0b(Insert(s, k)) -= T from 4)(s)

Subcase 2 k > i V k < -i
JkI serves its i to prove that (ilnsert(s, k)) - 'r from 0o(s).

1.sing the schemne (5), we have (V s) 40(s).

with identity, as well as thle infinitary induction rule (Q).

The following diagram summarizes the relationships among diffierent. subtheories

and the fuill theory:

Th(S) First Order Predicate Calculus + Infinite Induction Rule

IND(S) ± Infinite Induction Rule
U

DS(S) + Proof by Contradiction
U

EQ(S) Four Rules of - and the Substitution Rule of V

The following theorem shows that the above deductive system is sound.



-136-

Thm. 4.2 For any two ground terms e, and e2,
(i) if 'e, - e2' E Th(S), then e, and e2 are observably equivalent by S (i.e., observably

equivalent in the models in F(S)), and
(ii) if 'eI  e2' E Th(S), then e, and e2 are distinguishable by S.

Proof The theorem follows firom the facts that (a) the nonlogical axioms hold in the

models in F(S) with - interpreted as the observable equivalence relation, (b) the

observable equivalence relations are preserved by the functions in the models in F(S). I

4.2.6 Properties of a Specification

We can define properties desirable of a specification by requiring that various

subtheories and the full theory derived from the specification satisfy certain conditions.
GLttag and Horning [28] have discussed the sufficient completeness property for a
restricted class of specifications, which has been found useful. We state that property in

our framework. We extend it to specifications using auxiliary functions and specifying
preconditions for the operations. The sufficient completeness property captures the

intuitive notion that the behavior of the observers is completely specified on intended
inputs and that the result of an observer on an intended input can be deduced by
equational reasoning. We relate this property to the behavioral completeness property

defined in the previous chapter and show that sufficient completeness is stronger than
behavioral completeness (Theorem 4.4) because behavioral completeness only requires that

the behavior of the observers be completely specified on intended inputs and it does not
say anything about what can be deduced from the specification.

When specifications are used to prove properties of programs using the data types

being specified, we often need to relate different constructor sequences. In that case, it is

desirable to have a specification satisfy a stronger property than sufficient completeness,
which in addition to the requirement that the behavior of the observers can be deduced by

equational reasoning on any intended input, also requires that the equivalence of the

observable effect of different constructors can be deduced by equational reasoning. We

call this property the completeness property of a specification and define it precisely. We



- 137 -

later see that for a complete and consistent specification S, formulas in IND(S) can be

proved using the Knuth-Bendix algorithm (see Subsection 4.2.7).
Recall from Section 3.5 that for a consistent and behaviorally complete

specification S, the models in F(S) are behaviorally equivalent w.r.t. { Polo E Q.

Furthermore, if S does not specify any nontrivial precondition for the operations, the

semantics of a specification S is a single data type, a set of behaviorally equivalent algebras.

In that case, for any two ground terms of type D, they are either observably equivalent by S

or distinguishable by S An obvious question is whether the proposed deductive system is

powerful enough to deduce this from a consistent and behaviorally complete specification.

We show that it is not the case. But if a specification is consistent and complete, then the

deductive system has this property.

Since S is hierarchical, S should preserve the specifications of the types used in S.

S should only specify the behavior of the operations of D, and it should not specify the

behavior of a type D' used in S that is not captured by its specification S'. Specifications so

designed are modularly structured; they support the factoring and hierarchical structuring

of the proof of correctness of a hierarchically designed implementation. We define the well

definedness property of a specification which captures this modularity requirement.

Before we discuss these properties, we prove

'rhm. 4.3 For a consistent S, for any two ground terms el and e2 of the same type, both 'el

-=- e2 and 'e, i e2' cannot be in Th(S).

Proof IfS is consistent, then F(S) A 0.

Suppose for some el and e2, both 'e, = e2' and 'e, e2' are in Th(S). e, a e2' E Th(S)

implies that e, and e2 are observably equivalent by S. Similarly, 'e, 9 e2' E Th(S) implies

that el and e2are distinguishable by S, which is a contradiction. I



-138-

4.2.6.1 Sufficient Completeness

As was said earlier for constructors, for a specification specifying nontrivial

preconditions for the operations, one is interested in ground terms in which the input to

every occurrence of an operation symbol satisfies the associated precondition. This is so

because an operation is not likely to be invoked with an input not satisfying the specified

precondition. Even if the operation is invoked on such an input, we are interested in its

behavior. Furthermore, if a specification uses auxiliary functions, ground terms in which

auxiliary functions appear are also not of interest because they are not used in programs

using the data type. Earlier we defined a legal constructor ground term (Def. 4.3); below,

we extend the definition to a ground term.

DeL. 4.4 A ground term e is called legal if and only if(i) e does not have any occurrence of

an auxiliary function, and (ii) for every subterm of e of the form el = e (e 1,. .. ),
where a E Q, 'P (el, ,... ne) T' E EQ(S). I

For a specificatior. using auxiliary functions and specifying nontrivial preconditions, only

legal ground terms are interesting. If such a specification is consistent and behaviorally

complete, any two legal ground terms are either observably equivalent by S or

distinguishable by S (see Section 3.5).

In [28], Guttag and Horning define the sufficient completeness property of

specifications which do not specify a nontrivial precondition for the operations and do not

use auxiliary functions. We state their definition in our framework.

Def. 4.5 A specification S is sufficienily complete if and only if for every ground term eof

type D' E A, there exists -a theorem derivable from S of the form 'e a c'' where e' is a
ground term of type D' without any occurrence of an operation symbol of D. I

In [281, the deductive system to be used to derive a theorem is not specified. Guttag [33]

requires that the equation' e = e * be in the equational subtheory EQ(S).

The sufficient completeness property can be extended to specifications using

auxiliary functions and specifying nontrivial preconditions for the operations. For auxiliary

functions, there are two possible extensions:



-139-

(i) Consider only the ground terms expressed using the operation symbols, because only

these terms can be used in a program, or

(ii) consider all ground terms, thus requiring that auxiliary functions also be completely

specified.

We take the former approach: however, we recommend that whenever an auxiliary

function is used, it be completely specified.

Def. 4.6 A specification is sufficiently complete if and only if for ever) legal ground term e

of type D' E A, a formula "e -e" E EQ(S), where e' is a legal ground term of type D"

without having any operation symbol of D or any auxiliary function. I

For example, the specification of Set-ln' is not sufficiently complete, because for instance,

a legal ground term (hoose(lnsert(Insert(Null, I), 2)) cannot be related to any ground term

of type Inl that does not have an) occurrence of an operation symbol of Set-lnt'.
The following theorem relates sufficient completeness to behavioral

completeness. The intuition behind this result is that if the behavior of observers on

intended inputs can be deduced by equational reasoning from S, then the observers must

be completely specified by S.

Thin. 4.4 If a specification S is sufficiently complete, then S is behaviorally complete.

Proof:- See Appendix 111. I

The converse of the above theorem however does not hold. So, the sufficient

completeness property is strictly stronger than behavioral completeness, as there are

specifications which are behaviorally complete but are not su fficiently complete. This is so

because in the definition of sufficient completeness, only a fragment of the deductive

system of first order predicate calculus is used to derive properties from the specification.

There can exist a legal ground term e of type D' E A such that we cannot derive' e = e' for

any e of type D' not having any occurrence of an operation symbol of D in the equational
subtheory EQ(S). However, we can derive the above equation in Th(S) using other rules in

addition to the rules of the equational subtheory. We illustrate this point using the

specification of Set-Int'. We add another axiom definiig Choose on sets of size > 1 as



-140-

returning the maximum integer in the set.

8. Choose(Insert(Insert(s, il), i2)) _ if Size(s) = 0 then (if,, il = i2 then Max(il, i2))

else (if- il = i2 then Max(Choose(Insert(s, iI)), i2) else Choose(Insert(s, iI))).

The modified specification is not sufficiently complete, because (hoose (Insert(Null, I)) is

not directly specified. Nor can we deduce by equational reasoning that

"Choose(Insert(Null, i)) - i. However, using the theorem of Int, ' (i = j a T) =* i =- j"

derived using the induction rule for integers, the axioms 3, 4, and 7 of Set-lnt', and case

analysis, we can prove by contradiction that

Choose(Insert(Null, i)) = i

It should be obvious that with a minor modification of the proof of Theorem 4.4, we can

prove the following generalization of Theorem 4.4:

Thn. 4.5 If for every legal ground term e of type D' E A, there exists a ground term e' of

type D' not having any operation symbol of D and auxiliary function such that ' e - e" E

Th(S), then S is behaviorally complete. I

Theorem 4.4 can be derived as a corollary of the above theorem. We conjecture that the

converse of the above theorem is also true, which says that the deductive system is

complete with respect to deducing the behavior of an observer on an intended input.

Conjecture 4.1 IfS is behaviorally complete, then for every legal ground term e of type D'

E A, there exists a ground term e' of type D' not having any operation symbol and auxiliary

function such that' e a e' E Th(S).

We can prove the following partial completeness result about the deductive

system in proving the distinguishability of legal ground terms of type D', D' E A U { D }.

Thin. 4.6 For a consistent and sufficiently complete S, if any two legal ground terms e1 and

e2 of type D are distinguishable by S, then 'e, i e2' E DS(S).

Proof See Appendix ill. I

If conjecture 4.1 is true, then we can prove a similar result about behaviorally complete

specifications: For a consistent and behaviorally complete specification S, if any two legal



-141-

ground terms e, and e2 of type D are distinguishable by S, then 'e, i e2' E Th(S).

4.2.6.2 Completeness

We cannot prove a similar result about the observable equivalence of legal

ground terms of type D, because we do not have a rule analogous to proof by contradiction

in the deductive system that enables us to prove the observable equivalence of ground

terms unless explicitly specified by the nonlogical axioms. Different but equivalent

specifications of the same data type can differ in the extent to which the observable

equivalence relation of legal ground terms of D can be proved from the nonlogical axioms.

For example, the terms lIsert(Insert(Null, 2), 2) and lInserl(Null, 2) are observably

equivalent by Set-nt', but "Insert(Insert(Null, 2), 2) = Insert(Null, 2)' Th(Set-int'). If we

add the following axiom to the specification of Set-Int':

9. Insert(Insert(s, il), i2) = if il = i2 then lInsert(s, il) else Insert(insert(s, i2), il),

then 'lisert(insert(Null, 2), 2) - Insert(Null, 2)' E EQ(Set-int'). The semantics of the

modified specific.tion is the same as the semantics of the original specification of Set-lnt'.

The more a specification of D captures the observable equivalence relation on terms of type

D, the more useful it is in deriving the theory of D and hence in proving properties of

programs using D. We define below a property of a specification requiring it to completely

specify the observable equivalence relation. We put a stronger requirement: We want

EQ(S), instead of Th(S), to have a formula 'e, - e2' for two legal ground terms e,, e2 if and

only if e, and e2 are observably equivalent by S, so that such formulas can be derived by

purely equational reasoning (i.e., using the rules of= and the substitution rule for V).

De. 4.7 A sufficiently complete specification S is complete if and only if assuming that the

specification S' of each D' E A .At is complete, for any two legal grounds terms e, and e2

of the same type, 'e, = e,' E EQ(S) if and only if el and e2 are observably equivalent by S.

I

The completeness property of a specification should not be confused with the completeness

property of a theory of an algebraic structure as defined in Logic [16]. Using Theorems 4.4

and 4.6, and the fact that for a consistent and behaviorally complete specification, any two



-142-

legal ground terms are either observably equivalent or distinguishable by S, we have

Thin. 4.7 For a consistent and complete specification S, for any legal ground terms el and

e2 of the same type, either 'e, _= e2 'E DS(S) or 'e, e ' E DS(S). I

Musser [61] has called a specification from which either 'e - e2' or 'el A e2' can be

derived in DS(S) to be fully specified, though his view of a specification is somewhat

different. He views the operator '-' as another operation of a data type, whereas we

consider '=' as a predicate in the underlying logic used to construct formulas.

4.2.6.3 Well Definedness

We would like a specification S to be modular, i.e., for the specification S' of each

D' E A u At. Th(S) 'L(S') = Th(S'). This means that Th(S) does not have a formula

expressed using symbols in L(S') that is not in Th(S'). Only those properties which involve

an operation symbol of D and/or auxiliary functions used in S can be proved from S; a

formula not having any operation symbol of D or -n auxiliary function in S and not in

Th(S') cannot be proved from S.

For a consistent and sufficiently complete specification, the following holds:

Thin. 4.8 For a consistent and sufficiently complete S, for any legal ground terms el, e; of

type D' E A constructed using the symbols in L(S'), if neither 'ej M e' E Th(S') nor
. ea ig e; E Th(S'), where S' is a specification ofD', 'e i e; - Tb(S).

Proof By contradiction.
2 h()menngta e an 'a

Suppose' ej A e' E Th(S) meaning that e, and e; are distinguishable by S (as well as by

S') (by Theorem 4.2). By Theorem 4.6, 'e i e ' E Th(S'), which is not the case. So the

theorem. I

However, we could have a specification S such that 'e' =' E Th(S) in the above case. The

following property of a specification rules out such cases.



- 143-

Def. 4.8 A specification S is ivell defined if and only if for every D' E A U At, assuming that

S of D' is well defined, Th(S) 1[(S') = Th(S'). i

We are usually interested in well defined and complete specifications.

Behaviorally incomplete specifications are occasionally of interest. Set-lnt' is such an

example.

4.2.7 Automation of IND(S)

Recentl Musser [61] has discussed how to automate IND(S) when S satisfies

certain conditions. If (i) S is consistent and complete, and (ii) the nonlogical axioms

derived from S can be written as equations (possibly using if-tlhen-else operator), then the

Knuth-Bendix algorithm, which treats equational axioms as rewrite rules, can be used to

derive an equational formula 'e, - e2' in the inductive subtheory IND(S). The equation
.e_ e2' is input to the algorithm as a rewrite rule to get a new convergent set of rules

having the added rewrite rule. There are three possibilities:

(i) The algorithm succeeds implying that the new equation is consistent with the

nonlogical axioms and thus provable,

(ii) an inconsistency, such as' ej -, e; where e, and e, can be proved to be not equal, in

particular 'T -, F' or 'F -, T,' is generated as a rule, implying that the equation is not a

theorem, and

(iii) the algorithm does not temfinate implying that (a) an additional lemma be proved

first, which could be guessed from the set of new rules generated, (b) the specified ordering

on terms used by the algorithm does not work, and some other ordering needs to be tried,

or (c) there does not exist a finite convergent set of rules to express IND(S).

The basis of deducing from (ii) that 'e, - e2' is not a theorem is the consistency f S and the

method of proof by contradiction: in fact "ei 3 e2' is a theorem in INI)(S) in this case. The

basis of deducing from (i) that *el = e2 " is a theorem in IND(S) is the completeness of the

specifications: For a substitution of all variables in c and c2 by ground terms, the resulting

ground terms ei and c have the propertI that either ' e c E IND(S) or

"e c," IND(S).



-144-

4.3 Theory of Exceptions Without Nondeterminism

We now incorporate the exceptional behavior of data types into their theories

with the assumption that specifications do not specify nondeterministic operations. New

atomic formulas are introduced to express the exceptional behavior of the operations. We

describe how the nonlogical axioms of Th(S) can be derived in this case from a

specification S. We discuss how to construct EQ(S), DS(S), IND(S), and Th(S). New

'logical' axioms characterizing the exceptional behavior of the operations are presented.

We extend the properties of a specification discussed in the previous section to

specifications specifying the exceptional behavior. For illustration, we modify the

specification of Set-lnt' so that the operation Choose is required to signal no-elemnent() on

the empty set; let Set-nt" stand for the modified Set-tnt. So, instead of the Restrictions

component specifying a precondition for Choose, it specifies a required exception

condition as follows:

#(s) = 0 =* Choose(s) signals no-elentento.

We also use the specification of Sk-lnt.

Besides the operation symbols and auxiliary function symbols, the language L(S)

also includes the names of exceptions signalled by the operations as specified in S.

Exception terms are constructed as discussed in Chapter 2, using terms and exception

names. There are two new sets of atomic formulas in addition to equations:

(a) e signals ext,

where e is a term, ext is an exception term, and every variable in ext is also in e; and

(b) ext = ext2,

where ext and ext2 are exception terms. The predicate 'signals' is similar to - but its arity

is (D u EXV) x EXV.

As in the previous section, we first discuss the derivation of the nonlogical axioms

of Th(S) from S. Then, we discuss the subthcories EQ(S), DS(S), and IND(S), and the full

theory Th(S). In the last subsection, we extend sufficient completeness, completeness, and

well definedness properties.



- 145 -

4.3.1 Derivation of Nonlogical Axioms

The nonlogical axioms of Th(S) are derived from the restrictions and axioms

components of the specification S in a slightly different way than discussed in

Subsection 4.2.1. We first discuss the restrictions, and later the formulas in the axioms

component

4.3.1.1 Restrictions Component

From a restriction specifying a required exception signalled by an operation 0,

RIX) 0 (X) signals ext,

we get the following nonlogical axiom:

Po(X) => (Ri(A) * o(X) signals exi),

because the restriction holds only if the input X satisfies the precondition associated with

a.5 For example, the restriction on the operation Top in the specification of Stk-Int,

Empty(s) =: Top(s) signals no-top(),

is a nonlogical axiom of Th(Stk-Int), as the precondition for Top is T. Similarly, from a

restriction specifying an optional exception signalled by an operation a,

a(X) signals exi =: 0(,

we get

P0 (X) = (a(A) signals ext =0 O1(X)),

as a nonlogical axiom. For example, the restriction on Push,

Push(s, i) signals overflow(s, i) = #(s) > 100,

is a nonlogical axiom of Th(Stk-Int).

S. Recall that the boolcan tcrrn R,(X) is an abbreviation for the formula R1(X) T.



-146-

4.3.1.2 Axioms Component

The preconditions in the restrictions component are also used in constructing the

nonlogical axioms from the formulas in the axioms component of S. As discussed in

Chapter 3, a variable in a formula in the axioms component cannot be freely substituted.

When the exceptional behavior was not considered in Subsection 4.2.1, the substitution was

conditional: The arguments to every operation in the axiom must satisfy the associated

precondition. Now, there is an additional requirement: The substitution should not result

in an operation signalling on its arguments.

To express the second condition, we introduce a unary auxiliary function

N?I, : D'U EXV -, Bool for every D' E A U { D I U AV These auxiliary functions are not

used in a specification. Informally, N? separates a normal value of D' from an exception: It

returns T if its argument interprets to a normal value of D': it returns F if its argument

signals an exception. Furthermore, N?,),(o(e ..... e)) is F if N?,).(e,) is false for any ei;

this constraint on the behavior of N? , enables Lis to get a simpler transformation of the

restricted form tla., in the axioms component of S.

Using N?D,, we transform a restricted formula in the axioms component to an

unrestricted formula which serves as a nonlogical axiom of Th(S). If an equation 'e, - e2' is

in the axioms component, where e1 and e2 are of type D', then the corresponding

unrestricted axiom is

(N?D,(e) A N?1),(e2)) *((PCel A PCe2) el a e2).

where PCe is a conjunction of conditions expressing the constraint that the input to every

operation invocation in a term e satisfies the associated precondition. Similarly, if a

restricted formula is 'e, = if b then e2,' then the corresponding unrestricted formula is

(N?11001(b) A N?i,)(el) A N?l,)(e 2)) = ((PC b A PCel A PCe2) =: ( b =* e, - e)).

If a restricted formula is 'e, = if b then e2 else e3,' then the corresponding unrestricted

formulas are obtained using the fact that this formula is equivalent to two conditional

equations

e 1  ifbthene 2

el _-if - b then e.

L3



- 147-

We illustrate the above transformation on the ollowing equation in the axioms component

of the specification of Stk-[nt:

Replace(s, i) - Push(Pop(s), i).

The corresponding unrestricted axiom is

(N?Stk.lnt(Replace(s, i)) A N?stk.ln1(Pusl(Pop(s), i))
(-, Empty(s) = Replace(s, i) = Push(Pop(s), i)).

4.3.1.3 Definition of N?D ,

A specification of D implicilly defines N?) and extends N?D, for every defining

type D' of D as well as any auxiliary types D' used in S. N?I)0 is defined by the specification

of D'. Since an operation a has the arity D, x ... x D --, D' U EXV, and N?), has the arity

D' U EXV -, Bool, we need to introduce variables ranging over values of a type and

exceptions to characterize N?,), . We have two options: (i) Introduce two kinds of variables

- variables of a single type D and variables of a union type D U EXV, or (ii) introduce only
i i

variables of a union type. If we adopt the second alternative, the formulas expressing the

normal behavior of the operations get long because we make the conditional use of the

variables. Since we would mostly be using formulas expressing normal behavior, we have

adopted the first alternative. Often, we do not need to have a formula in which both kinds

of variables are mixed. Except in the axioms for N?. , and the axioms characterizing the

geaieral properties of the exceptional behavior of the data type, we would rarely use

variables of a union type. Terms as well as exception terms are constructed using only

variables ranging over a single type (except in the next section). Henceforth, we use xe,

xe 1 ... , xe .... ye, ye,,..., ye,..., ze, ze 1 .... ze , etc., as variables of a union type,

and exv, exv 1,... , exv n... as variables of type EXV.

We now discuss the axioms defining N?,). First of all, for a variable x of type D',

we have the axiom

N?)(x ) _--T.

For an operation o, let P,(X) be its precondition. Let us assume that the restrictions

component specifies for a, I required exceptions and m optional exceptions. For each

I < i <14 let R,(A) be the condition on input X when a is required to signal an exception;



- 148-

similarly, for each I < j < m, let 0(X) be the condition when a has an option to signal.

For every constructor a of D, we have an axiom defining N? corresponding to D,

N?(XE) ((Po(XL) A (- R E(X) A ... A - R(XE) ) A

(~ 0(XE) A ... A m(XfE)) = N,(o(XE))),

where XE stands for the variables xe1,.., xe; xe is a variable of union type Di U EXV, and

N?(XE) is an abbreviation for N?D1 (xel) A ... A N?Dn (xen).

The above axiom captures the assumption in a specification that if(i) an input to a

constructor a is normal, (ii) the input satisfies the precondition associated with a, (iii) none

of the conditions associated with a required exception for a holds for the input, and (iv) the

condition an input must satisfy in case a signals an exception specified to be optional, also

does not hold for the input, then a returns a normal value. In other words, this assumption

states that the exceptional behavior of the operations on their intended inputs must be

completely specified by the Restrictions componenL

The extension of the definition of N? D ' for every D' E A is also captured by a

similar set of axioms corresponding to every observer a E 02 of result type D'. There is an

axiom having the above structure corresponding to every observer a in a.

In addition to the above axioms, we have a rule for every operation and auxiliary

function expressing that if any argument to a function is not normal, then the result of the

function invocation is also not normal.

(N?D) (xe1) = F V ... V N?,n (xe) F) I- N?D,(Oxe,..., xen)) F.
I n

Note that there is no axiom so far which states the condition when N?D, is F. In the next

subsection on equational subtheory, we introduce a rule characterizing such behavior of

N?D,.

We use the nonlogical axioms derived from the restrictions and axioms

components of S, and the axioms defining N? ,) along with the additional axioms and rules

characterizing the general properties about the exceptional behavior to build various

subsets of Th(S) and finally Th(S) itself.



-149-

4.3.2 Equational Subtheory

As in case of specifications without nondeterminism and without exceptional

behavior, we define the equational subtheory EQ(S) as a set of atomic formulas. Besides

equations of the kind discussed in Subsection 4.2.2, we also have the following atomic

formulas:

(a) e signals ext, and

(b) ext1 = ext2

In addition to the rules characterizing discussed in Subsection 4.2.2, we use the

substitution rule for v, and the rules characterizing 'signals' and capturing the observable

equivalence relation on exception values. The substitution rule for V,

(V x) P(x) =4 ,=,Ix/e],

where x is a variable of type D', and e is a term of type D' and is substitutible for x in b 116],

is modified to
(v x)(x (N?De) T ox/ej),

since x is a variable ranging over normal values and e can signal an exception.

Rule (i) below says when N?I1 is false, which is if a term of type D' signals an

exception, then N? , on that term is false. Rule (ii) states that if two terms are observably

equivalent and one signals an exception, then the other also signals the same exception.

Rule (iii) states that if a term sighals two exceptions, then the exceptions are observably

equivalent. Rule (iv) states how the observable equivalence relation on exception values is

related to the observable equivalence relations on normal values.

(i) xe signals exv I- N?D,(xe) F,

(ii) xe = xe2, xe signals exv -- xe2 signals exv

(iii) xe signals exv, xe signals exv2 i- exv - exv2, and

for every exception name ex of arity D, x... x D ,

(iv) x1 - x21, ... , x - x2 I- e4jx~, .... x 1) ex(x 21,..., x2 ).

It should be obvious that the above rules are sound tinder the following interpretation: In a

type algebra A, for a ground term e and a ground exception term ext, the formula
'e signals exl' is interpreted as: The interpretation of e in A is the exception value that is the

interpretation of ext in A. For two ground exception terms ext1 and ext2, the formula



- 150 -

'ex1 exi 2' is interpreted as: The interpretation of exi1 is observably equivalent to the

interpretation of exi 2 in EXY of A.I We now show how to Lise the above rules along with the nonlogical axioms and
the axioms and irtles defining N?D) , to prove some properties of data types. Since many

non logical axioms and formulas are conditional having t form
(7) b =* e signals ext.

where b is a boolean term, we use a trick similar to the one used in Subsection 4.2.2 to deal

With sLuch formulas so that they, can be proved in EQ(S). We introduce an auxiliary.

function if-then : Bool x EXV x D' -, D' U EXV having the behavior defined by the

following axioms:

if-then(Tf, exi, e) signals exi

if-I hen(F, ext, e) =-e.

Using the auxiliary function if-then, the formula (7) is equivalent to

e =-if-tlien(b, ext, e)

asfor an instantiation of the variables in (7), if b interprets to T, then (7) is equivalent to

e signals exi.' The boolean term bm~Ust not signal.

As an illustration, we prove from the nonlogical axioms of Stk-Int that

'Top(Nu II) signals no-topo' E EQ(Stk-lnt) in Figure 4.10. Similarly, we can prove

Top(Pop(lushm(NulI, i))) signals no-top().

Replace(Pusi(Pusm(Null, il), i2), i3)) -=Pusl(Push(Null, ii), B3).

However,

Replace(Push101((Null, I) .. ,10), 0) =-Push I)'(((Null, 1),-., 100), 0)

is not derivable because we cannot derive 'N?Stk-int(l-h-s.) T' due to the optional

exception specified for Push when its stack argument is of size > 100. But we can prove the

Figure 4.10. Proof or Top(Nu I) sigmmals no-topo'

1. Top(s) -=if-tlien(Empty(s), no-topo, Top(s)) Restriction on Top
2. IFmrpty(Null) =- T Axiom 4
3. if-tlien(FInipty( Null), no-topO, Top( Null)) signals no-top() Axiom of if-then
4. Iop(Null) signals no-topo Substitution in 1, and rule (ii) above



: "-151-"

following formula:

N?stk.lnt(Push'01 ((NuI, 1),...., 101)) =

Replac(Pusl 0 ((Null, 1), ... , 101), 0) Pushl 0(((Null, I),..., 100), 0).

* Pop(Null) = Null

is not derivable because of the precondition on Pop.

It would be interesting to investigate the conditions under which

(i) an axiom of the form 'e signals ex( can be treated as a rewrite rule 'e -, exl' and the

Knuth-Bendix algorithm be applicable to such axioms, and

(ii) a conditional formula involving signals can be rewritten as an equation using the

if-then and if-lhen-else operators so that the Knuth-Bendix algorithm is applicable to

conditional formulas also.

4.3.3 Distinguishability Subtheory

As in case of specifications without nondeterminism and without exceptioral

behavior, DS(S) is defined to be a set consisting of atomic formulas and the negations of

atomic formulas. DS(S) includes EQ(S) as well as formulas having the following structure:

(a) e, A e2,
(b) ext1 A ext 2, and

(c) e siggals ext,

where 'e siglials exi' is an abbreviation for '- (V x,..., xn) I e signals ext I' such that

x1 ... , xn are all the variables in the formula 'e signals ext.' Besides the axioms and rules

of inference of DS(S) discussed in Subsection 4.2.3, we have the following additional

axioms and rules expressing properties about the exceptional behavior of data types which

enable us to prove formula having the above structure.

(v) for every exception name ex: D, x ... x D,
('W ,, -= V . .V -X, - 2 )-., ex(xl . ..x,) - ex(x21. . ~ )

(vi) for different exception names ex D x ... x D and ex D' X... x D in 4S),
I n 1 M

- ex(x, ex 2(x21 ,. .. ,x),

(vii) for a union type ' U EXV,



-152-

N?),(xe,) T, N?,)(xe2) - F - xe a xe2,

where xe and xe2 are of type D' u EXV, and

(viii) N?(xe) - T I-- - (V exv) I xe signals exvj
Rule (v) and axiom (vi) capture the distinguishability relation on exception values. Rule
(v) is the opposite of rule (iv) given in the previous subsection; it states that two exception

values having the same mune are distinguishable if any of the arguments in one value is

distinguishable from the corresponding argument in the other value. Axiom (vi) states that

two exception values are distinguishable if their exception names are different. Rule (vii)

states that two values are distinguishable if N?D, holds for one and does not hold for the

other. Rule (viii) says that if N?D , holds for a term, then it cannot signal an exception. The

above axiom and rules are clearly sound. Note that these rules can be used to derive

formulas having the structure '- xe = xe,,' which implies that 'xe xe

We can derive from the nonlogical axioms of Stk-ilt using rule (vii) that

(8) Top(Null) A i,

because 'Top(Null) signals no-toP0,' N?Int(i) T,' and 'N?int(Top(Null)) F E

DS(Stk-Int). The formula

overflow(s, i) 4 no-top()

is immediate from the axiom (vi) above. Using the theorem (8) in DS(Stk-Int), we can

prove by contradiction that

Null i Push(si).

4.3.4 Inductive Subtheory

The inductive subtheory IND(S) can be constructed as in Subsection 4.2.4; we

can also use the above axioms and rules characterizing the exceptional behavior. The

induction rule (I) in Subsection 4.2.4 has to be modified; instead of requiring that for every

constructor ground term e of type 1), ?[x/el be derivable in the premise, we only need to

consider constructor ground terms for which *N?D(e) - T' is derivable. So, we have:

Modified Induction Rule

Given a formula 4(x) with a free variable x of type D.

For every constructor ground term e of type D, N?D(e) - T = O[x/e - (v x) 4<x).



- 153-

We can use the methods discussed in Subsubsection 4.2.4.3 to establish the infinitely many

premises.

As in Subsubsection 4.2.4.4, if a specification S specifies nontrivial preconditions
on constructors, then the above formula can be simplified to

for every legal constructor ground term e of type D, N?i)(e) = T : 4[x/eI

S(V x) 4(x),
because of the assumption about the semantics of a constructor on inputs not satisfying the
associated precondition, discussed in Chapter 3.

For example, for Stk-lnt, the induction rule is:

For every legal constructor ground term e of type Stk-Ilt,

Nr(e) =- T == 4Is/e - (V s) ,(s).

The above rule can be simplified using the following theorem in a way similar to Set-lnt' in
the previous section:

Thin. 4.9 Every legal constructor ground term e of type Stk-nt such that
'N?Stk.lnt(e) -T E EQ(Stk-Int), is equivalent by equational reasoning to another legal

constructor ground term e' having only Null and Push, i.e., if 'N?Stk.lnt(e) a T' E
EQ(Stk-int), then' e e'' E Q(Stk-Int).

Proof By induction on the number of Pop and Replace in a constructor ground term e

using axioms 1 and 3 in Figure 4.7. See the details in Appendix Ill. I

The simplified induction rule is:

(9) For every legal constructor ground term e of type Stk-lnt having occurrences of

Null and Push only, N?Stk.lnt(e) T 4 ,[s/e] - (V s) .$s).

4.3.5 The Full Theory

The full theory Th(S) is also constructed in a similar way as for data types without

exceptional behavior. For example, we can prove the normal forni theorem using the

simplified induction rule (9):

s NulI() V (3 s', i) I s = Push(s', i) I.



-154-

The diagram summarizing the relationships among different subtheories for

specifications not specifying exceptional behavior on p. 135 also holds in this case.

For the extended deductive system, the following extension of Theorem 4.2

holds:

Thin. 4.10 (i) For any two ground terms el and e2 of the same type, if 'e1 = e2' E Th(S),

then el and e2 are observably equivalent by S and if 'e, e2' E Th(S), then el and e2 are

distinguishable by S,
(ii) for a ground term e and a ground exception term ext, if 'e signals ext" E Th(S), then

the interpretation ofe in every model A in F(S) is the interpretation of ext in A,

(iii) for two ground exception terms exti and ext2, if 'exi = ext 2" E Th(S), then exti and

ext2 are observably equivalent by S, and if 'ext i ext2' E Th(S), then exti and ext2 are

distinguishable by S, and

(iv) for any ground term e, if 'N?(e) = T' E Th(S), then the interpretation of e in every

model A in F(S) is a normal value, and if 'N?(e) =- F' E Th(S), then the interpretation of e

in A is either an exception value or undefined.

Proof The theorem follows from the facts that

(a) the nonlogical axioms of Th(S) hold in every model in F(S),

(b) the observable equivalence relation used as the interpretation of = is a congruence,

(c) the exceptional behavior of an operation is completely specified by the restrictions

component of S on inputs satisfying its preconditions, and

(d) the axioms and rules defining N? and characterizing the exceptional behavior holds

in every type algebra. I

We demonstrate how the full theory constructed from a specification S can be

used to prove properties of programs using the data types specified by S. Figure 4.11 is

another implementation of union procedure using Choose in a C[U-like language. In this

implementation, an element of the first set argument to union is successively selected using

the operation Choose, removed from the copy of the first argument, and inserted into the

copy of the second argument until the operation Choose signals no-element, indicating that

the set is empty. The handler for no-element associated with the loop is then invoked. In



Figure 4.11. Procedure Union -11

union =proc(sI. s2 :Sct-lnt") returns (Set-Int")
i : Int
ri Set-lnf' sl
r2 Set-Int" s2

I = s A r2 Ms2
while true do

I (Sizc(rl) = 0 _=F A IN(Remove(rl, Choosc(rl)). Insert(r2. Choosc(rI)), si. s2))
V (Sizc(rl) = 0 =' TA Rr fliof(sl s))

= Sct-InC'$Choose~rl)
I I N(Remove(rI. i), lnsert(r2, i), si, s2) I

ri Sct-Int"$Rcmove(rl, )
r2 =Sct-InliInsert(r2, i)

I I NOr1, r2, si1, s2) I
end ececpt when no-element:

end
{Runion~sl, &2)1 r2

return (02)
I RI
end union

INOr, r2, si, s2) = '(Vj) I(Has(sI, j) V Has(s2, j)) (Iias(rl, j) V liasgr2. j)) TI A
(Siyze(rI) + Size(r2)) :5 (Sizec(sl) + Size(s2)) =_' A Sizc(r2) > 0 =_ T)

I/0 Spec j/ication for union

T R, where R = R I A R2, and

R I =(V i) I (Has(sl. i) V Has(s2, i)) c*Has(union(sl. s2), i) =_T
R2 =Size(union~sl. s2)) <!,Size(sl) + Size(s2) =_T

the code, we have included formulas within { 'that express relations among different

variables at that point in the code. The Floyd-Hobare inductive assertion method for

proving properties of programs 117, 36, 551 can be extended to incorporate the exceptional

behavior of programs. A statemnent in this case can terminate in more than one way - either

normally or by signalling an exception. Corresponding to every possible way of

termination of a statement, we associate an input formula for an output formula.

Figure 4.11 includes the input-output specification of union. We use the.

following notation for specifying a procedure F'(A): Corresponding to every possible



-P156-

outcome of F on an input X, there is a formula relating the input to the outcome. Since F

can terminate normally or by signalling an exception, we specify the weakest input

condition for normal termination, as well as for every exception signalled by F.

TC (X) =: F(X) signals ext1

TCM(A) = F(X) signals exm
TCm+I(A) =* R(X';r),

where TC(X),.... TCni+ (X), and R are first order formulas, and r stands for a possible

result returned by F on the input X. "I'C(X) = F(X) signals exti' is interpreted as: The

weakest input condition for F to terminate. by signalling exi is TC,(X).

'TCM+ (X) =* R(X, r)' is similarly interpreted as: The weakest input condition for F to
terminate normally returning a value r such that R(X, r) holds is TCn (X'). If F is

deterministic, then such an r is unique for every X; otherwise, there can be many r's such

that R(X, r) holds. Instead of using r as denoting a iesult returned by F on X, we can also

use F(X).
The formula 'IN(rl, r2, sl, s2)' is used as an invariant of the loop in the program

in Figure 4.11. Using the backward substitution semantics of the control structures, we can

generate the verification conditions and show the required formulas to be in Th(Set-Int").

The partial correctness proof of union is complete if we can show that
I NO11, r2, slI, s2)

((Size(rl) = 0 - F A IN(Reniove(rl, Choose(rl)), lnsert(r2, Choose(rl)), sl, s2))

V (Size(ri) = 0 M F A R unionm, s2)))
r2

To prove the above formula, we need the theorem

Size(rl) > 0 - T * Size(Reniove(rl, Choose(rl))) + I = Size(rI).

The while loop terminates because each time in the loop, Size(rl) is reduced, and

Choose(rl) signals no-element when Size(rl) = 0 a T.

An alternate approach to the Floyd-Hoare method of reasoning about programs

is to use the first order semantics of control structures as suggested by Cartwright and



- 157 -

McCarthy [8]. They have shown how reasoning about recursive programs can be

completely carried in first order logic. The definition of a recursive program can be

considered as an axiom defining the function computed by the program with an

appropriate condition on variables.6 The termination of such a program can also be proved

by adding a minimization scheme corresponding to its function. For example, the above

iterative union program can be transformed to an equivalent recursive program, and the

axiom characterizing the function computed by the program is derived from the recursive

program. Th(Set-Int") is enriched by adding this axiom about union and a minimization

scheme corresponding to union. The input output specification of union can then be

proved as a theorem in the enriched theory. We use a similar approach in tile next chapter

in showing the correctness of an implementation.

4.3.6 Properties of a Specification

It should be clear from the discussion in the previous subsections that the

following extension of Theorem 4.3 holds:

Thin. 4.11 For a consistent S,

(i) for any ground terms el and e2 of the same type, both 'e, = e2' and 'e, i e2' cannot be

in Th(S), and

(ii) for any two ground exception terms exit and extI, both 'ext = exl " and 'ext, i ex12"

cannot be in Th(S), and

(iii) for any ground term e, both 'N?(e) - T' and 'N?(e) = F' cannot be in Th(S). I

We extend the definitions of sufficient completeness, completeness, and well

definedness properties discussed in Subsection 4.2.6 to the specifications specifying

exceptional behavior. The results about these properties in Subsecti ) 4.2.6 directly extend

when the modified definitions are used.

6. Tlhc condition is that a variable is instantiated to a value of its type other than -L, which is used to dcnote
non-termination.



- 158-

4.3.6.1 Sufficient Completeness

Recall that the sufficient completeness property as defined in Subsection 4.2.6

requires that the behavior of the observers on any intended input should be deducible by

equational reasoning. When a specification specifies data types having operations which

signal exceptions, then the observable behavior of the operations also includes their

exceptional behavior. Two values of a data type can also be distinguished in this case if a

sequence of operations signals one exception on one value and does not signal on the other,

or if the sequence of operations signals different exceptions on different values. In the

extended definition of sufficient completeness, we want to capture the intuition that in

addition to the normal behavior of the observers, a sufficient complete specification must

also completely specify the exceptional behavior of the operations when their input satisfy

the associated preconditions.

If a specification has only required exception conditions for the operations, then

the above amounts to requiring that

(i) for any legal ground term e, either 'N?(e) = T' E EQ(S) or 'N?(e) F' E EQ(S), and

(ii) (a) if'N?(c) T' C EQ(S) and e is of type D' E A, then the condition stated in Def. 4.6

must be satisfied (i.e., there is a ground term e' not having any operation symbol of D or

auxiliary finctions used in S such that 'e = c" E EQ(S)), and

(b) if 'N?(e) = F E EQ(S) and for every subterm e, of e, 'N?,),(e1) - T' E EQ(S), then

the formula 'e signals exf' E EQ(S) for some ground exception term ext.
IfS specifies optional exceptions also, then there are legal ground terms for which

neither 'N?(e) a T' nor 'N?(e) F' is provable. For example, we can neither prove

N?1 t(Top(Push1')((Null, 1), ... ,101)))- T

nor

N?1nt(Top((Pushl'(((Null, 1),.... 101))) - F

from the specification of Sk-lnt. For such a specification, the definition of sufficient

completeness Must include the condition that for such a ground term, if we assume

'N?)4e) a-T,' then 'e = e" is derivable using equational reasoning.* This condition is

based on an aspect of the semantics of a specification, namely that if an operation does not

signal on an input for which it had the option to signal, then the formulas in the axioms



-159-

component for the operation behavior must hold.

DeL 4.9 A specification S is sufficiently compleie if and only if

(i) for every e of type D' E A, if 'N?(e) = T" C EQ(S), then there is a theorem e e" E

EQ(S) for some c', a ground term of type D' not having any operation symbol of D and

auxiliary function in S,

(ii) for every e (= o(e,. ... e)) of type D' E A U { D }, if 'N?(e) - F" E EQ(S), and

'(N?(e) A ... A N?(e)) = T E EQ(S), then there is a theorem 'e signals ex"l E EQ(S) for

some ground exception term ext, and

(iii) for every legal ground term e of type )' E A U 11) }, if neither 'N?(e) =- T E EQ(S)

nor 'N?(e) =_ F E EQ(S), then there exists a subterm el of e such that e, = a(ew1 ... , el)

and "O[x/Ie1 ,,.... xn/e J T' C EQ(S), where o is specified to optionally signal if its
input satisfies O(x,, ..... X), and assuming N?(e) = T,' there is a theorem ' e -= el '

EQ(S o I N?(e) - T }), where e' is a ground term of type D' having no operation symbol of

D and auxiliary function used in S. I

S U { f } stands for the nonlogical axioms derived from S plus the formula f, and

EQ(S U I f 1) stands for the equational subtheory derived using S U I f } as the nonlogical

axioms. The condition (iii) above amounts to proving the theorem assuming 'N?(e) - T.'

For example, Stk-Int is sufficiently complete. 'Top(Null) signals no-top()' E

EQ(S). Assuming 'N?,0 t('Top(Push'()((Null, 1)0.... 11))) - T,' we can derive

"Top(Pusl ")((Null, I), ... 101)) = 101' in EQ(S).

The specification of Set-Int" is not sufficiently complete, because, for instance,

though 'N?1nt(Choose(iisert(lnsert(Null, 0), 1))) _=' EQ(S), there does not exist any

ground term e' of type nt not having any operation symbol of Set-Int" such that

('hoose(isert(lnsert(Null, 0), 1)) - e" E EQ(S).

The results discussed about specifications not specifying exceptional behavior in

Subsection 4.2.6 directly extend to specifications specifying exceptional behavior when

appropriately modified. We have



-160-

Thn. 4.12 IfS is sufficiently complete, then S is behaviorally complete.

Proof See Appendix Ill. I

The obvious analog to Theorem 4.5 also holds; its converse is a conjecture analogous to

Conjecture 4.1. We also have

Thin. 4.13 For a consistent and sufficiently complete S, if any two legal ground terms e

and e2 of type D are distinguishable by S, then 'e, 3 e2' E DS(S).

Proof See Appendix Ill. I

4.3.6.2 Completeness and Well Definedness

The completeness property of a specification can be defined in this case in the

same way as in Subsection 4.2.6. Def. 4.7 in Subsection 4.2.6 works for this case also.

Theorem 4.7 for this case can be proved in the same way as for specifications without

exceptional behavior. It can be shown that the specification of Sik-Int is complete, whercas

the specification of Set-lnt" is not complete.

The well definedness property is also defined in the same way as in case of

specifications without exceptional behavior. Def. 4.8 in Subsection 4.2.6 is valid. It can be

shown that the specifications of Set-lnt" and Sk-lnt are well defined.



- 161-

4.4 Theory of Nondeterminism

In this section, we discuss specifications specifying nondeterministic operations.

Again, we first discuss specifications without exceptional behavior; later, we incorporate

the exceptional behavior also. For the first pail, we modify the specification of Set-lnt'

given in Figure 4.1 so that the operation Choose is specified to be nondeterministic. Let

Set-lnt" stand for the modified specification. In the second part, we use the specification

of Set-hnt given in Figure 3.1.

We find it convenient to express properties of a data type with nondeterministic

operations as formulas using nondeterministic operation symbols (which is also the reason

to allow a specification to have such formulas in the axioms component), but such a

formula must he interpreted properly. A nondeterministic function symbol does not have

the substitution property with respect to - unless interpreted properly. We discussed this

in the previous chapter: we will repeat the discussion here. For example, the formula

'Choose(s) E s - T" in the specification is to be interpreted as any integer returned by

Choose on the argtUment s is in the set s. The formula

sl = s2 = Choose(sl) - Choose(s2)

need not hold if'Choose(sl) = Choose(s2)' is interpreted as an integer returned by Choose

on sl is 'the saine as an integer returned by Choose on s2, because different invocations of

Choose on the same argument may return different integers. However, if we interpret

'Choose(sl) = Choose(s2)' as for every possible integer returned by Choose on sl, Choose

on s2 can return the same integer, and vice versa, then the formula

sl =- s2 , Choose(sl) - Choose(s2)

holds. We adopt the latter interpretation, so that the substitution property continues to

hold.7  The adopted interpretation is consistent with the definition of observable

equivalence on ground terms involving nondeterministic operations induced by S, given in

Sections 2.2 and 2.3.

7. As is discusscd in the previous chapter, die reason for rcjccting the friner ;nterpretation is that the
formula 'o(X 1 .X) a(X1 ,..... Xn)' for a nondctenninistic symbol o is almost always false under it.



- 162-

We cannot however express many interesting properties about a data type

because in a formula involving a nondeterministic operation symbol 0, different

occurrences of a term a(e ... e) may result in different values. We often need to express

properties in which different occurrences of the term o(e,... e) stand for the same value.

For example, consider another version of the union procedure given in Figure 4.12, which

is a slight modification of the version given in Figure 4.11. In this case, the while loop has

the condition '- (#(s) = 0),' instead of 'true' in Figure 4.11. In verif)ing this version of

union, we must use the properties of i, a result returned by Choose. In such a case, we.

introduce an auxiliary function arp: DI x ... x D x D' -, Bool corresponding to the

nondeterministic operation a, which is the relation describing the behavior of a.

(*) a...p(x... x, y') T if u can return y as a possible result on x1 .... x,

F otherwise

For example, we introduce Choose-p for Choose and use Choose-p to express a property of

i, a result returned by Choose.

Since formulas in the axioms component of S are expressed using

nondeterministic operation symbols, we transform them to equivalent formulas having only

deterministic symbols using the auxiliary functions corresponding to the nondeterministic

symbols. We discuss the transformation procedure TR below. L(S) now also includes the

auxiliary function a-p corresponding to every nondeterministic operation symbol a. The

transformed formulas have a restricted interpretation just as the original formulas in the

axioms component, so we derive unrestricted formulas from the transformed formulas
using the method discussed in Section 4.2 for specifications with deterministic operations.

The precondition specified by a nondeterministic operation a is taken as the precondition

for the corresponding auxiliary function u-p. So in the specification of Set-Int"',

"- #(s) = 0' is the precondition for Choose-p. The unrestricted formulas serve as the

nonlogical axioms of S. To prove a formula f involving nondeterministic operation

symbols, we first transform fusing TR, and then prove TR(f) from the nonlogical axioms

of S.

The transformation procedure TR must embed the semantics of S assumed in

Chapter 3. Recall that the semantics of S only requties that for every data type in D(S), the

J.-



- 163 -

semantics of S, an operation specified to be nondeterministic must return an appropriate

value on every, input, the operation in every data type in D(S) need not have the maximum

amount of nondeterminism specified by S.

4.4.1 Transformation Procedure TR

We first describe the procedure TR and later verify that TR(f) is semantically

equ~ivalent to f Before describing the transformation procedure, we illustrate it using

examples. Consider the following formula in the axioms component of Set-Int"':

Choose(s) E s =T

Figure 4.12. Procedure Un ion - III

union proc(si, s2 :Sct-Int...)*returns (Set-int"')
i: Int

r2: Set-Inf": s2
10r si A r2 -=s2 }

while ' Set-Int."..$Sizc(rl) = 0 do
I Choosce.p(rI. j) =I TA JN(Rcmnove(rI. i), Insert(r2, i), si, s2 I
i Sct-Int ...$Choosc(rl)
IIN(Rcmovc(rl. i), Insert(r2, i), si, s2) I

ri Set-Int"'..$Rermovc(rl, i)
r2 =Set- I nt...$I nsert(r2, i)

I IN(rl, r2, sA, s2) I
end
I R uflion(S1sl) M

return (02)

end union

I N(rI, r2, si. s2) = (V j) I (Has(sI, j) V Has(s2, j)) =*(Hais(rl, j) V I1ls(, j)) TI A
(Si,.c(r!) + Size(r2)) :5 (Size(sI) + Size(s2)) =- TA Size(r2) > 0 T

I/O Specificatioii for union

T= R, wherecR =R I A R 2, and
Ri1 = (V 0) 10 (IIs(s1. i) 1V I las(s2. 0)r- I las(union(sl, Q2, i) T I
R2 = Sizc(union(sI. s2)):5 Size(sI) + Sizc(s2) -=T



-164-

The above formula states that every value returned by Choose is in the set s. The

transformed formula obtained after applying the procedure would be

( (V i) I Choosep(s, i) - T = i E s - T I A (3 i) Choose-p(s, i) - T)

The second conjunct states that Choose returns at least one value on every input. The

unrestricted formula, which serves a nonlogical axiom of Set-Int', is obtained using the

precondition for Choose; it is given below:

((V i) '- #(s) = 0 = T (Choose-p(s, i) = T * i E s = T )I A

(3 ) 1 #(s) = 0 - T = ('hoose-p(s, i) - T )

Let us consider another Iormula ' Choose(sl) - Choose(s2).' This states that for every

value returned by Choose on s, there is an observably equivalent value returned by

Choose on s2, and vice versa. TR transforms this formula to

((V il) 1 Choosep(sl, il) _ T , (3 i2) I ('hoosep(s2, i2) A il 2 Ri A

(V i2) I Choosep(s2, i2) - T => (3 il) I Choose-p(sl, il) A i I2 I )
We now present the transformation procedure TR, which is defined inductively

making use of the structure of a formula.

Basis fis an atomic formula'e, _ e 2'

(a)fdoes not have any occurrence of a nondeterministic operation symbol:

TR(f) _f

(b) both e and e2 have occurrences of nondeterministic operation symbols:

We wish TR(f) to roughly express that for every instance of the free variables in f for

every possible choice made about the invocations of the nondeterministic operation

symbols in el, there are choices for the invocations of the nondeterministic operation

symbols in e2 such that the instantiations of el and e2 return equivalent results, and vice

versa.
TR('e, = e2') has the following structure:

(V z,.., z) [ cJ =(3 y ..... yp) [ c2 A el = e; I] A

(V Y,... ,y,) [ c, =* (3 z, .. z) c A e' = e .
where z,. ... zM are new variables such that corresponding to each occurrence of a

nondeterministic operation symbol u in ell say the occurrence a(e 1 ..... era), there is a

variable z to stand for the possible result returned by a on its input. The formula c is a



- 165-

conjunction of the equations of the form '..p(e,,,. ei' z) - T, stating conditions on z,.

Similarly for e2, new variables y, .... , are introduced, and C2 is obtained from e 2 e; and

e; are obtained from e, and e2 respectively, by substituting z1 .... zm and y, ..... yp for

subterms having nondeterministic operations as the outermost operation in el and e2

respectively. We discuss later how c1 and ei are constructed from e,, and C2 and e; are

obtained from e2.

(c) only one side of the equation 'e1 = e2' has occurrences of nondeterministic operation

symbols. Without any loss of generality, we assume that only the L.h.s. has occurrences of.

nondeterministic symbols.

Construct c, and ei from e, as discussed above. Then,

TR('e.=e 2')=(Vz, .... z) c,=*e;=e 2lA(3z, .... ,z) c1
This completes the basis step of the definition of TR. The second conjunct is to ensure that

there is at least one value returned by el.

Induclive Siep

Since all other logical symbols can be expressed in terms of A, V and V, we define

how TR works on formulas having these symbols.

(a) iffis - f , then TR(f) - TR(J)

(b) iffis f, A f 2, then TR(f) TR(J) A TR(f)

(c) iffis (V x)f1, then TR(f) (v x) TR().

This completes the definition of TR.

For instance, a conditional equation 'b =: e, e2, where b is a boolean term, is

transformed to

b =* TR('el - e 2"

if b does not have any nondeterministic operation symbols. If b has nondeterministic

symbols, then the conditional equation is transformed to

TR('b - T') = TR('e, a e2')
=((V z, .. .. ., zk') I c =* b'- T I A (3 zj,.... , Z' ) T R(e, a_ e2)

Since such a b is assumed to behave deterministically (See Section 3.1), i.e., for an

instantiation of the free variables X in the conditional equation, b interprets either to T or

to F, the above formula agrees with the interpretation of a conditional equation assumed in



-166-

Section 3.2 on the semantics of a specification.

We now describe how to construct c and e' from a term e by induction on the

number of occurrences of nondeterministic operation symbols in e. Let k stand for the

number of occurrences of nondeterministic operation symbols in e.

Basis k= 1

Let e = o(el .... , e' ) be the subterm of e having the nondeterministic operation o as

its outermost operation symbol. Then c is '..p(e, e ) T' and e is obtained by
replacing el in e by z1. The type of z, is the range type of a.

Inductive Step Assume c and e' can be constructed if e has k' < k occurrences of

nondeterministic symbols. Show for k.
(i) I f e has the subterm having k occurrences of nondeterministic operation symbols,

let the subterm be el = ,(e, ..... e), where a is a nondeterministic operation symbol.

Each e. has less than k occurrences of nondeterministic operation symbols. By the
inductive step, let c] ..... c be the formulas obtained by applying this procedure on

e .... e respectively, and let e; ..... e' be the terms obtained by replacing subterms
having nondeterministic operation symbols by new variables in e1 ... , e respectively.

Then
C= a-p(e; .... e,z k) =- T A c A ... A c,

and e' is obtained by replacing el in e by zk.

(ii) There is no such subterm of e,. Consider all outermost subterms of el having a

nondeterministic operation symbol as their outermost operation: let them be e1 .... e.

Each of these subterms has less than k number of occurrences of nondeterministic
operation symbols. By inductive step, let c1,.... cn be the formulas obtained by
transforming ei , ... , e respectively, and let ei ... e' be the terms obtained by replacing

subterms having nondeterministic operation symbols by new variables in e1 .... e,

respectively. Then

C=C A...Ac,

and e' is obtained by replacing e,. .. , e by e ... e respectively.

This completes the discussion about how c and e' are obtained from e.



-167-

Thin. 4.14 fand TR~f) are semantically equivalent.

Proof See Appendix Ill. i

4.4.2 rh(S)

The nonlogical axioms obtained as discussed above are used to prove properties

about the data type. A nonlogical axiom involves existential quantifiers in contrast to a

nonlogical axiomn of a specification specifying only deterministic operations. So, the whole

machinery of first order predicate calculus is needed to prove an arbitrary equation or an

inequlality involving nondeterministic symbols. So it is not meaningful to discuss the

subiheories EQ(S), DS(S), and IND(S):, we instead discuss the full theory Thi(S). The

formiulas are proved in the same way as in case of specifications specifying deterministic

operations only.

As an illustration of the use of Th(S), we verify the version of thle procedure union

given in Figure 4.12. Note that the backwa;d JSubstitution semnantics of thle assignment

statement

i : = Set-Int$Choose(rl)

is given as

{Choose...p(rl, i') =-T A Pil I i Set-int$Choose(ri) 1P1
instead of
{~ osed )I i Set-int$Choose(ri) I P}

because different occurrences of the expression Choose(rl) could possibly return different

results. For example, the verification condition

I IN(Remove(rI, Choose(rl)), lnsert(r2, ('hoose(ri)), si, s2)

iSet-Int$Cluoose(rl) I IN(Remove(r 1, i), Insert(r2, i), sil, s2)

is not true, where as

I Choose..p(rI, i') -=T A lN(Reniove(r1, i'), Insert(r2, i'), sI, s2)

iSet-Int$Clioose(rl) I IN(Reniove(rl, i), Inser((r2, i), si, s2)

is true. In this case also, 'IN(rl, r2, si, s2)' serves as an invariant of the loop. Using the

backward substitution semantics of the control structures, we can generate thle verification



-168-

conditions and show the required formulas to be in Th(Set-Int"'). The partial correctness

proof of union is complete if we can show that

('~Size(rl) = 0 = T A IN(rl, r2, sl, s2))=

(Choose-p(rl, i) - T A IN(Remove(rl, i), Insert(r2, i), si, s2))

To prove the above formula, we need the theorem

Size(r) > 0 = T Size(Remove(rl, Choose(rl))) + I Size(rI).

The termination is also ensured because each time in the loop, Size(ri) is reduced, so the

loop condition will eventually become false.

We think that many properties of nondeterministic operations expressed as

equations and inequalities can be derived from the untransformed nonlogical axioms (the

nonlogical axioms obtained from the formulas in the Axioms component of the

specification before applying TR) using techniques employed for deterministic operations,

for instance, viewing equations as rewrite rules and using Knuth-Bendix algorithm for

deriving properties. We have not investigated the extent to which this can be done. This

hypothesis is another reason for preferring to write specifications directly using

nondeterministic operation symbcf!s as compared to writing them indirectly using the

relations corresponding to nondeterministic operations.

4.4.3 Data Types with Exceptional Behavior

We discuss the modifications required to incorporate the exceptional behavior

specified by the specifications with nondeterministic operations. We describe how to

derive the nonlogical axioms from a specification. We use the original specification of

Set-tnt given in Figure 3.1 for illustration; the specification is repeated in Figure 4.13.

As before, an auxiliary function _.p is associated with every nondeterministic

operation symbol a. v-p is not strict with respect to its last argument.



-169-

Figure 4.13. Specification or Set-Int

Operations

Null -*Set-tnt as 0
Insert Set-Int X mnt -Set-tnt

Remove Set-Int X Int -. Set-mnt
Has Set-mnt X mnt -*Bool as x2 E xi
Size Set-tnt -* t as # (x1)
Choose Set-tnt -. t nondelerminislic

no-element()

Restrictions

# (s) = 0 =* Choose(s) signals no-element

Axioms

Remove(0, i) = 0
Remove(lnsert(s, ii), i2) =_if il =12 then Remove(s, il) else lnsert(Remove(s, i2), il)
lEO MF
i E lnsert(s, i2) =_if ii = 12 then T else 11 E s
#1(0) M0
# (Inse rt(s, 0)) if iE sthen # (s) else # (s) +1
Choose(s) E s T

aDix ... x D-,D'U EXV

aop:D I x ... x D nx (D'u EXV) ,Bool,

a-KX 1 ,... , xn, ze) T if N?(ze) =_T and acan return ze

as a possible result on x,...I xn,

T if N?(ze) =_F and a signals ze on x1, .. . , x,,,

F otherwise

Recall that zc is of uion type.

We extend the transformation procedure TR discussed in the previous subsection.

Besides equations, we have two additional kinds of atomic formulas: 'e signals ext' and
*extI exi 2' TR for equations is same as in the previous subsection except that the new

variables introduced in the transformation are of union type.



- 170-

An exception name is treated like a deterministic operation symbol, so

ext 1  exi2' is treated like an equation 'e, = e2'. TR is extended to treat 'e signals ex" as

e ext.' TR is applied on 'e - ext.' In the transformed formula, a subformula of the form

* e' _ exi'' wherever ext' is an exception term and e' is a non-variable term, is replaced by

the subformula 'e' signals ex'.' Note that a transformed formula may involve terms

constructed using variables ranging over union types.

The restrictions on a nondeterministic operation a are transformed to get the

nonlogical axioms as rollows: A restriction specifying a required exception for a,

Ri(A) a c(A) signals ext,

is transformed to
P(X) = ( Ri(A) =* a-p(X, exi) T).

For example, from the restriction on Choose,

#(s) = 0 Choose(s) signals no-elementO,

we get

#(s) = 0= Choose-p(s, no-elemento) =_ T.

A restriction specifying an optional exception for a,

a(X) signals ext =: 0(P),

is transformed to

PO(X) = ( .p(X, ext) a T =: Oj(A) _ T).

Axioms defining N?D, are constructed the same way as for the specification with

deterministic operations except that there is no axiom due to a nondeterministic operation

a because the range of the corresponding auxiliary function V.P is Bool and not

Bool U EXV. In addition to the axioms and rules expressing general properties of the

exceptional behavior of the operations discussed in the previous sections, we have another

rule. Recall that a nondeterministic operation can either signal an exception or has the

choice to return one of many possible normal values. An operation does not have the

choice between returning a normal value and signalling an exception on the same input.

This property is captured by the following axiom for every nondeterministic operation a:

((:3 ze) [o..AX, ze) _ T A N?(ze) - T I A (3 ze) Ioup(X, ze) - T A N?(ze) a F 1).

From the formulas in the axioms component of S, the nonlogical axioms are



-171-

derived as follows: We apply TR on a restricted formula to replace nondeterministic

operation symbol b) the corresponding auxiliary functions. Since the restricted formula

expresses the normal behavior of the operations, the new variables introduced in the

transformation range only on normal values. So, we use variables of a single type instead of

the union type. For instance, for an equation 'e1 - e2' having nondeterministic operations

on both side, we get
(V z I ... )[c l =* (3 y , ... ,',P)[c, 2 A el'= e; ] A

(vYl .. ... yp) c2 =:- (3 z,,... z) cl A e' - e;2 il
To get the corresponding unrestriL,ed formula incorporating the exceptional behavior of

the operations and the preconditions, we must require that
(i) 'N?,),(ej) - T and 'N?i),(e;) = T'hold, and
(ii) every operation invocation in the formula must satisfy the associated precondition.

The unrestricted formula for the above restricted formula is

(V z1 .... z ) I Nr).(ei) = (PCcI = (cI =
(3y ..,... ,y) I N?D(e';) = ((PC C2 A PCej A PCe;) ( c2 ^ ej e; A)!)

(v y,.., )') I N?D,(e;) =* (PC2 =* (C2 =*

(3 z,, .... M) I N?D0(ei) = ((PCC, I^ PCe; A PCe;)  C1 A e° e; ) )

A similar transformation can be obtained for a restricted formula of the form
e = ir b then e2.'

For example, the formula

Choose(s) E s a T

in the specification of Set-Int is transformed first to the restricted formula using TR,

((v i) IChoose-p(s, i) - T . i E s - T I A (3 i) jChoose-p(s, i) = T ),
and later to

((v i) I N?Bo01(i E s) = T - (Choosep(s. i) T (N?Boo1(T) T i E s T)) ]

A (3 i) IChoose-p(s, i) - T 1)9

which gets simplified to

((V i) [Choose.p(s, i) = T * i E s - T A (3 i) [Choose-p(s, i) T 1),

because 'N?,.o(i E s) - T and 'N?1 100o(T) - T' are derivable.

Figure 4.14 is yet another implementation of union using the nondeterministic

-7-7-



-172 -

operation Choose which signals on the empty set. This version is similar to the version

given in Figure 4.11 except that Choose is nondeterministic. It can also be verified using

the properties in Th(Set-Int).

Figure 4.14. Procedure Union - V

union =proc(sl. s2 :Set- Int) returns (Set-Int)
i : mnt
ri :Set-lnt: si
r2 :Set-mnt s2

4ri=-sl Ar2 as2}
while true do

I (Size(ri) = 0 -=F A Chojosc..p(rl. i) TrA lN(Rcmoove(rI. i). Inscrtr2, i), si. s2))
V (Sire(rl) = 0 =' TA Rr 2 uniorlS s2))

:= Sct-Int$Choosc(rl)
I IN(Rcmnovc(rI. i), Inscrt(r2, i), si, s2))

rl = Set-In tnovc(rl, i)
r2:= Set-int~lnscrt(r2, i)

{IN(rl. r2, si. s2) I
end except whcn no-ecement:

end

rcturn (r2)

cnd union

IN(rI, r.. ss) =((V j) [(las(sI j) V la-s(s2. j)) (Has(rI, j) V Iias,(r2 j)) a TJIA
(Si/e(r)) + Si/00r))5 j Si/%jsI) + SiIze(s')) = T A Si/c(r2) > 0 =1T)

i/O .-pec ificalion for union

I1'= R. %% here R = R I A R2. and

R I = (V 0)1 Has4sl, i) V 1-Ia,62s2W i-) liasunion(si. s2), i) MTi
R2 = Sitv(uruon(sl, s2)) S Suesl) + S'itc(s2) aT



- 173 -

4.4.4 Properties of a Specification

We can prove theorems analogous to Theorems 4.10 and 4.11 for specifications

specifying nondeterministic operations and exceptional behavior, demonstrating the

soundness of the axioms capturing general properties of data types.

The definition of sufficient completeness property has to be modified

significantly, because there is no meaningful definition of the equational subtheory for

such specifications. Because of the semantics of S as defined in Section 3.2, it does not help

to consider only the formulas involving deterministic operations and the auxiliary functions

corresponding to nondetenrinistic operation symbols. Recall that for a behaviorally

complete specification, for every input X to a nondeterministic operation, the

corresponding auxiliary function is required to hold for at least one (X, ze), where ze is a

possible result returned by a on X, and the axioms do not precisely specify the values on

which the auxiliary finction holds. This incompleteness is because the semantics of S does

not constrain an operation specified to be nondeterministic to have any fixed amount of

nondeterminism (3ee Section 3.2).

A plausible modification to the definition of sufficient completeness is to require

it to use the whole machinery of first order predicate calculus for deduction. Instead of

requiring a theorem to be in EQ(S), we require it to be in Th(S). In addition, the definition

ofsufficient completeness given in Subsection 4.3.6 must also be modified to deal with the

case when a legal ground term e involves nondeterministic operation symbols. For e of

type D' E A, if'N?D,(e) = T' E Th(S), it cannot usually be proved equivalent to a ground

term of type D' having no operation symbol of D, as in case of

Choose(Insert(Insert(Null, i), 2)) for example. Instead we must prove that there exists a set

of ground terms I e, ... , e, I of type D' not having any operation symbol of D such that

(3z "... ,z)cA(e-eVe'-e 2 V ... V e- e, )i,

where c is the condition on zV .... zm generated due to r when we apply the procedure TR,

and e' is the term obtained from e h substituting z,..... zm for the subterms having

nondeterministic operation symbols as their outermost operation. { e ,..... ek consists of

all possible outcomes of e. (Since it is assumed that 'N?,),(c) Tr CT'Th(S), z, ,... z. are of

a single type instead of a union type.) For example, in case of



-174-

Choose(Insert(Insert(Null, 1), 2)), we can show that

(3 i) [ Choosep(Insert(Insert(Nuil, 1), 2), i) = T A (i I V i 2 ) ]

We have not investigated the relationship between the above definition of

sufficient completeness and the behavioral completeness property for such specifications.

We conjecture that most of the results (Theorems4.12, and 4.13 in particular) of

Subsection 4.3.6, when appropriately modified, would hold for such specifications also.

The definition of well definedness given in Subsection 4.2.6 directly extends to

this case also. The definition of completeness, like the definition of sufficient

completeness, must require in this case that for any two legal ground terms e and e2 of the

same type, 'e, - 2" E Th(S) if and only if e, and e2 are observabl equivalent. The

definition 4.8 of well definedness given in Subsection 4.2.6 is valid in this case also.



- 175 -

4.5 Strong Equivalence of Specifications

In Subsection 3.2.6, we defined the equivalence on specifications; the definition

required two equivalent specifications to have the same semantics. As discussed in

Subsection 4.2.6, two equivalent specifications can be different in what properties of a data

type (a set of data types) can be deduced from them. Below, we define a stronger

equivalence relation on specifications, which not only requires that the two specifications

have the same semantics, but also that the same properties can be deduced from the

specifications.

Def. 4.10 Two specifications S, and S) are strongly equivalent if and only if assuming that

for eery type used in S and S2, we use the same theory,

(i) S, and S, are equivalent, i.e., D(S) = D(S2), and

(ii) Th(S)I L(D) = Th(S2) L(D)"

If SI (or S2) specifies a nondeterministic operation a, we assume that L(D) includes the

corresponding auxiliary function u.-p in place of a.



-176 -

5. Correctness of Implementation

One of the main pLIFposC5 of designing a specification of a data ty pe is to have a

standard that can be Used to verify' "hether an alleged Implementation of the data i1 pe is

correct. In this chapter, xke propose a correctness criterion for an Implemnictation of ai data

type x\.ith respect to its Specification, and discuss a method emrbodying the proposed

correctnless criterion. In this process, we also exhibit hiow the theory of a data type

discussed in the preViouls chapter is used.

A\n iniplcmicrtation of a data type D) is concerned with ho" to realize the behavior

of 1), in contrast to its Specification wher-e the main concern is to piecisel) state its behavior.

lwtuiti ci speatking. our correctness criterion is that a corrct im plenicnt atiloll Vth respect

to a, speci lcation must have the same obser~able bcha\*o specrbdb h

specification.

Our11 approach for proving correctness of an implemencrtation is similar to that of -

Hoare [371. Zilles [761 and GLuttag et al. [291, and is radically different fromn the ADJ groUipS 4

approach 1231. We separate the correctness mnethiod fromn the semantics of the host

prograrnnling Ilngulage In \\hich an implementation is coded. Vv c do not wish 'Lo concern

OUrselkes \kith the Issue of semnantics of the control struIctures in the programming

languadge, so \Ae assumne that the senmantics of the procedores implementing the operations

of D is ah-eadN derived from their code. In contrast, the ADM group does not seem to

separate the correctness method from the semantics of the host programming language. It

seems to be incorporating tile semantics of the control structures used inl implementing the *

operations into the correctness method, for instance, see their definitiotn of deriier, which is

a moi ph ism from the specification algebra to the implementation algebra 1231. 1-his makes

its approach complex and restrictive.

Ani inplemntalion uses data types abstractly; it does not refer to any particular

imrnp Ic1eiint a t ion o f a da ta t~ PC u)etse d i n It. A rCU rsiv e I impIc eentatIi on o f a da ta ty pe D is an

exception because a reference to D) in the rcuLrsive imiplemencrtation is interpreted as the

in th

reference to the implementation itself. We discuss recursive impleentations later in the

shapter: until then. we assume tht at implementation of a data type does not use t ie dataci f data



- 177 -

type itself. For the time being, we also rule out mutually recursive implementations of a

collection of (recursive or non-recursive) data types in which an implementation I of a data

type D uses a data type D' and an implementation 1' of D' uses D. We discuss mutually

recursive implementations later with recursive implementations.

While deriving the semantics of the procedures implementing the operations of D

in an implementation 1, we do not use the semantics of any particulai implementation of a

data type D' used in 1. We instead use the theory constructed from the specification S' of

D', abstracting from all correct implementations of D' with respect to S'. The proof of

correctness of an implementation of D thus does not depend on any property specific of a

particular implementation of D'. It remains valid even when an implementation of D' is

modified or replaced, as long as the new implementation of D' is correct with respect to the

specification of D'. This separation of the proof of use from the proof of implementation

hierarchically structures the correctness proof, reducing the complexity of the verification

process [371.

In the first section, we discuss the correctness criterion and present an overview of

different steps in the correctness method. In the second section, we discuss the

implementation structure and the semantics of an implementation. In the third section, we

describe in detail the method for proving correctness of an implementation with respect to

a specification. In the fourth section, we discuss extensions to the proposed method for

proving correctness of recursive and mutually recursive implementations.

I=

'I.



- 178 -

5.1 Correctness Criterion and Overview of Correctness Method

As discussed in Chapter 3, a specification S in general specifies a set D(S) of

related data types, because the behavior of some of the operations is intentionally left

unspecified on certain inputs. In an implementation, the behavior of the procedures

implementing these operations must be defined on all inputs in their domains, because an

implementation in most programming languages realizes a single data type.1 The designer

of an implementation must pick one data type from the set D(S) of data types.

If a specification specifies preconditions for the operations, the designer of an

implementation has the freedom to decide what the procedure implementing such an

operation should do on an input not satisfying its precondition. This is because in defining

the semantics of a specification, it is assumed to be the user's responsibility to ensure that

the input to the procedure satisfies the specified precondition. If a precondition is specified

for constructor, the procedure implementing the constructor could either signal or return a

value of the defined type. However, the value returned must be constructible by a

procedure implementing a constructor using inputs satisfying its precondition (see

discussion on p. 89. for the elaboration of this assumption). If a precondition is specified

for an observer, the procedure implementing the observer could return a value of its range

type, or signal. For example, the operations Pop and Replace of Sik-int are specified to

have - (Empty(s) -0)' as the precondition. An implementation of Stk-Int could have, for

example, the procedure implementing the constructor Pop either signal on an empty stack

or return an arbitrary stack.

For an operation specified to optionally signal exceptions, if the input to the

procedure implementing the operation satisfies the associated condition, the designer has a

choice between signalling the specified exception and returning a normal result that

satisfies the axioms. For example, if optional exceptions are used to specify the size

requirement on the values of a data type, as in case of Sik-Int, an implementation must

decide the maximum size of the values. The procedure iniplementing the constructor P-sh

1. We arc not considering paramcterizcd implementations.



- 179-

in an implementation of Stk-Int could either signal oerlow or return a stack constructed

by pushing the integer argument on the stack argument.

If a specification specifies nondeterministic operations, the requirement that an

implementation of a nondeterministic operation must have maximum amount of

nondeterminism specified by the specification is too strong. (In case of the specification of

Set-tnt given in Figure 3.1, such a requirement would mean that the procedure

implementing the operation ('hoose must be able to norideterninistically pick any element

of the set.) It is more appropriate to leave it to the designer of an implementation to decide

how much nondeterminism a procedure implenmenting a nondeterministic operation should

have: The procedure when viewed on 'abstract" values of the data type could be either

deterministic, returning a fixed result out of the many possible choices specified by the

specification for an input, or it could exhibit limited nondeterminism or maxinlum amount

of nondeterminism specified by S, returning a subset of the set of possible results specified.

For example, a correct implementation with respect to the specification of Set-lnt can have

the procedure implementing the operation Choose return the maximum integer in the set,

say, or it could have the procedure nondeterministically pick between the minimum and

maximum integers in the set, etc. As is discussed later, a deterministic procedure can also

simulate nondeterministic behavior on 'abstract' values by returning different values on

different values of the rep representing the same 'abstract' value of D. We call such a

procedure pseudo-nondetermninistic.

5.1.1 Semantics of an Implementation

By a procedure, henceforth, we mean a procedure in an implementation I of D

implementing an operation of D, unless stated otherwise, by a constructor procedure and

an observer procedure, we mean a procedure implementing a constructor and a procedure

implementing an observer, respectively. We use the name of an operation of D in S written

in capital letters, as the name of the procedure implementing the operation in 1. Outside I,

we use an operation name instead of the name of the procedure implementing the

operation to signify that the data type is being used abstractly.

As data types are used abstractly in an implementation, the semantics of an



- 180 -

implementation I is a set of implementailon algebras. These algebras can be constructed

hierarchically as in Chapter 2; we use in the construction, the implementation algebras

serving as the semantics of the implementations of the data types being used in I. Like a

type algebra, an implementation algebra has a domain corresponding to every defining

type D' E A, which is defined by an implementation algebra of an implementation ' of D'.

The domain corresponding to D is in general a subset of a domain corresponding

to the rep defined by an implementation algebra of an implementation Irep of the rep. It

consists of the values of the rep used to represent the values of D. The subset is

characterized by a formula Inv(r) with exactly one free variable r of the rep type. The

formula Inv(i) represents the strongest unary relation on the values of the rep preserved by

the constructor procedures in i. It captures the minimality property of the implementation,

namely that a value of the rep that represents a value of D can be constructed by finitely

many applications of the constructor procedures and that these values constitute the

smallest subset closed under the constYctor procedures.

Let F(I) stand for the semantics of i. This set can be defined inductively. We

assume that a set of primitive data types supported by the host programming language are

implemented correctly with respect to their specifications by its compiler. The semantics

of the specifications of such primitive types serves as the basis step of the inductive

definition. If one wishes to prove the correctness of the implementation of a primitive

type, the primitive type of the language in which the compiler is coded would then serve as

the basis.

In the inductive step, an implementation algebra A in F'(1) has the following

structure:

A = [ VI) I U { V) I D' E A }, EXV; { i or E Ct }].

V ) = { I v E Vi A lnv(v) }, where Vi  is defined by an implementation algebra inI)rcp rep

F(Irep) for an implementation [rep of the rep. For each D' E A, VD. is defined by an algebra

in F'(1),) for an implementation 1
,)' of D'. The specification of the procedure

implementing a is an abstract specification of i0.

In the next section, we discuss hok to construct F(I) after the discussion about

the implementation structure and about Inv(r).



- 181 - §

5.1.2 Correctness Method

If we consider specifications not specifying any nondeterministic operations, then

the correctness criterion is simple: F'(1) q F(S). So, to prove the correctness of an

implementation 1, we need to show that every implementation algebra in F4(1) is also in

F(S), which can be done using the method discussed in Section 3.2 to show whether a type

algebra is in F(S). Two main steps of this method are:

(i) Construct the observable equivalence relation on V) , as discussed in Sections 2.2 and

2.3, using the observable equivalence relation on V1) corresponding to each defining type

D' C A and the observable equivalence relation on V., and

(ii) interpret the axioms and restrictions in the algebra, and show that they are satisfied.

Since the set of observable .e'qiuivalence relations is a congruence, the observable

equivalence relations must be preserved by the procedures. The observable equivalence

relation is the largest such congruence on the algebra.

The above discussion is the formal basis of the correctness method proposed by

Guttag et al. [291 and Kapur [401. The observable equivalence relation on the domain

corresponding to D is Guttag et al.'s equality interpretation. The above method in fact

extends the methods in 1291 and 1401 because it can handle procedures signalling exceptions

as well as nondeterministic procedures implementing deterministic operations. 2

Note that if there exists a correct implementation I of S, then S is consistent,

because then F(S) is not empty. This is the basis of Guttag and Horning's statement [281

that one way of showing consistency of S is to design a correct implementation I of S.

2. A nondeterministic proccdure can implement a dcterninistic operation if all possible results of the
procedure on every input are observably equivalenL



- 182-

5.1.2.1 Nondeterminism

For a specification S specifying nondeterministic operations, the criterion that
1(!) g F(S) is too strong as it rules out implementations with pseudo-nondeterministic

procedures which ought to be correct. In such an implementation, a nondeterministic

operation is implemented either as a deterministic procedure or as a nondeterministic

procedure that does not preserve what should be the observable equivalence relation on the

values of the rep. It returns different values when applied on different rep values

representing the same 'abstract' value of D, but every value returned is a possible result

specified by S on the input; nondeterministic behavior of an operation is realized in this

way. If we take the largest equivalence relation on the rep values that is preserved by the

procedures as the interpretation of = in the implementation (which is so in case of

specifications not specifying nondeterministic operations), the axioms and restrictions in S

may not hold for such an implementation. However if an equivalence relation preserved

only by the procedures implementing deterministic operations is taken as the observable

equivalence relation, then the axioms and restrictions hold in S.

Consider for example, the implementation of Set-nt in a CLU-like language

given in Figure 5.1. The procedure COOSE is deterministic and returns the first element

of the sequence value used to represent the set argument. The largest equivalence relation

on the sequences preserved by all the procedures is the identity relation, and it can be

shown that the axioms of the specification of Set-lnt do not hold if the identity relation is

taken as the observable equivalence relation. However if we take the relation

Fqv(sl, s2) = (SI$Size(sl) -Sl$Size(s2) ) A (V i) I IN(s1, i) IN(s2, i) 1, where

IN(s, i) = (3 j) 1 l.< j _ SI$Size(s) A SI$Fetch(s, j) =_ i],
and SI stands for the data type Sequence of Iniegers, as the observable equivalence relation,

then the axioms hold. The procedure ClHOOSE returns 1, for example, on the sequence

Addh(Addh(New, I), 2) and 2 on Addh(Adli(New, 2), 1), so CI lOOSE behaves differently

on members of the same equivalence class of sequences reprcsening the same set value.

C! lOOSE is an example of a pseudo-nondeterministic procedure.

To fully illustrate the correctness method, we discuss two variations of the

implementation in Figure 5.1 differing in the implementations of Choose. In the first,



-183-

Figure 5.1. An Implenentation of Set-tnt

SETI'-INT = cluster is NULL, INSFRT, REMOVE, HAS. SIZE. CHOOSE

rep = SEQUENCE-INT

NULL = proco returns (cvt)
return (rep$Ncwo)
end NULL

INSERT = proc(s: cvt, i: lInt) returns (cvt)
if INDFX(s, i) < rep$Size(s) then return (s) end
return (repSAddh(s, i))
end INSERT

REMOVE = proc(s: c\t, i: Int) returns (cvt)
j: Int : = INI)EX(s. i)
if j _< rep$Si.c(s) then return (rcp$Rcmh(rcpSRcplacc(s, rcp$'Iop(s))) ) end
return (s)
end REMOVE

HAS = proc(s: cvt. i: lnt) returns (Hool)
return (IN l)I-X(s, i) _!. rcp$Size(s))
end HAS

SIZE = prnc(s: cvt) returns (Int)
return (rcp$Size(s))
end SIZE

CHOOSE = proc(s: cvt) returns (Int) signals (no-elcment)
if rcp$Size(s) = 0 then signal no-element end
return (rep$ottom(s))
end CHOOSE

INDEX = proc(s: cvt, i: Int) returns (Int)
c: lnt 1
while c < rcp$Size(s) do

if rep$Fctch(s, c) = i then return (c) end
c := c+l

end
return (c)
end INDEX

Choose is implemented as a deterministic procedure CHOOSE' which returns the

maximum integer in the nonempty sequence; the procedure CIIOOSE' is given in



-184-

Figure 5.2. In the second, Choose is implemented as a nondeterministic procedure

(IIOOSE" which returns the maximum or minimum integer in the nonempty sequence.

CIIOOSE" is given in Figure 5.3. The construct Select in the code of CI lOOSE" behaves

nondeterministically: Select(SI, S2, ..., Sn), where Si is a statement, arbitrarily picks one of

the staiements given as its arguments for execution. Note that neither of CHOOSE' and

Ci lOOSE" is pseudo-nondeterministic.

Figure 5.2. Cl lOOSE'

CIIOOSF = proc(s: cvt) rcturns (int) signals (no-clement)
if rcp$Size(s) = 0 then signal no-clcment end
return (MAX(s))
end CHOOSE'

MAX = proc(s: rep'* returns (nt)
m: = rep$Blottom(s)
for i: = 2 to rep$Size(s) do
if m < repSFctch(s, i) then m = rep$Fctch(s, i) end

end
return (m)
end MAX

Figure 5.3. CHOOSE"

CHOOSE" = proc(s: cvt) returns (lnt) signals (no-element)
if rep$Size(s) = 0 then signal no-elcment end
Select(return (MAX(s)), return (MIN(s)))
end CHOOSE"

MIN = proc(s: rep) returns (Int)
m: = rep$lk)ttom(s)
for i: = 2 to rcp$Size(s) do
if m > rcp$Fetch(s, i) then m = rep$Fctch(s, i) end

end
return (i)
end MIN



-185-

5.1.2.2 Definition of Correctness

We can now state the correctness criterion. It has two parts. The first part deals

with implementations not having pseudo-nondeterministic procedures, and the second part

takes care of pseudo-nondeterministic procedures. In the second part, the equivalence

relation used on the rep is not required to be preserved b) the procedures implementing

nondeterministic operations thus allowing them to be pseudo-nondeterministic; the

equivalence relation is only required to be preserved b the procedures implementing

deterministic operations.

Der. 5.1 An implementation I is correct with respect to a specification S if and only if

assuming that every data type D' used in I has a correct implementation I' with respect to its

specification S',

(i) F(I) C F(S), or

(ii) for every algebra A E F(1), there is a set of equivalence relations,

E = { ED, I D' E A U {D} I U Exv, such that

(a) for every defining type D' E A, E) is the equivalence relation on Vi), used to prove

correctness of the implementation 11.' of D', and similarly, Frep is the equivalence relation

on Vre p used to prove correctness of an implementation Irep of the rep,

(b) EEXV is the equivalence relation defined as follows: For an exception name ex of

arity D1 x...x D , if v1, v;> E ED ,..., <v, vn> E E) then <ex(v,...v ), ex(v, ..... vn)> E EEXV

(c) Erep C ED,

(d) E is preserved by the functions corresponding to detenninistic operations in A, and
(e) A/E E FIS). I

A/E is the quotient algebra of A induced by E except that E need not be a congruence; the
function 1' in A/E corresponding to f in A that does not preserve E behaves

nondeterministically. The formal characterization above is complex because an

implementation of a defining type or the rep could also have pseudo-nondeterministic

procedures.

In the correctness method, we do not explicitly construct the set F(i) of

implementation algebras defined by 1. We reason about the set as a whole by not using any



- 186-

property specific to any particular implementation of D' C A or of the rep, and by instead

using the procedure specifications and the theories of the defining types and the rep. We

show that the axioms and restrictions of S hold when interpreted in I by deriving them

from the procedure specifications.

Roughly speaking, the following steps need to be carried out to show correctness

of an implementation:

(i) Derive the specification of every procedure in the implementation as a function on

rep values fiom its code.

(ii) Design a formula Inv(r) characterizing the subset of the rep values needed to

represent the values of D. It must express the strongest unary relation preserved by the

constructor procedures.

(iii) Design the equivalence relation on the values of the rep satisfying Inv. The

equivalence relation must be preserved by the procedures implementing the deterministic

operations.

(iv) Interpret the restrictions and axioms using the procedures in place of the operations.

Replace for a variable of type D, a variable of the rep type satisfying Inv. Interpret

corresponding to D as the equivalence relation of step (iii).

We discuss each of these steps in detail in the next two sections: The second section

discusses the first two steps: the remaining steps and the correctness method are illustrated

in the third section. We argue that a formula weaker than Inv often suffices; furthermore,

the equivalence relation needed in step (iv) is also often weaker than the strongest

equivalence relation preserved by the procedures implementing the deterministic

procedures. We also discuss what extra steps need to be performed if auxiliary functions

are used in a specification.

For recursive and mutually recursive implementations, there is an additional step

in the correctness proof. We need to show that the rep (reps in case of mutually recursive

implementations) defined by a recursive domain equation(s) is nonempty. The rest of the

proof is the same as in case of nonrecursive implementations.



187-

5.2 Implementation Structure and Semantics

Besides the procedures implementing the operations of D, an implementation I of

D may include helping procedures needed in writing the procedures implementing the

operations. For example, INDEX is a helping procedure in the implementation of Set-int

given in Figure 5.1. A helping procedure is not available outside the implementation, so

we call it an iniernal procedure of 1. Let I stand for the set of all internal procedures usedp

in I. The procedures in I may also use types other than the rep and the defining types of D,

if need be: we call such types intnal types of I and denote the set of internal types in I as

it. Note that the internal procedures and internal types of an implementation I are

different from the auxiliary functions and auxiliary types used in its specification S.

! this thesis, we do not wish to be concerned about the sernantics of the control

structures used in coding the procedures. There are at least two approaches to avoid

considering the control structures, which are discussed below. However, we illustrate the

correctness method using only the translational approach. We have worked the correctness

proofs using the ether approach; the proofs in that case are similar in flavor to the proofs

using the translational approach. These proofs are not presented in the thesis. We believe

that the correctness method would work using any approach for specifying the procedures.

Most programming languages supporting user defined data types provide a

mechanism that encapsulates a collection of procedures implementing the operations of a

data type and provides an abstract view of data outside the mechanism, for example,

cluster in CLU, form in ALPHARD, etc. The encapsulation mechanism constrains the use

of the procedures. We discuss below the properties desired of an encapsulation mechanism

that facilitate the correctness proof of an implementation. Finally, we discuss how we get

the semantics of an implementation I as a set F4(I) of implementation algebras to complete

the formal aspects of the correctness method.



- 188-

5.2.1 Procedures-Approach I

In Chapter 4, we discussed a method based on Floyd-Hoare approach for

specifying a procedure. In this method, a procedure is specified as a set of formulas

relating its input to the result(s) returned by it. The procedures implementing the

operations in an implementation I can be specified in this way; the specifications of

internal procedures are not included if they are not referred in the specifications of the

procedures implementing tile operations. A procedure is specified as a transformation on

the values of the rep. To verify the correctness of a procedure with respect to its

specification, the theories of the defining types, tile rep, and the internal types are used.

Figure 5.4 is the specification of the procedures in the implementation of Set-llt

given in Figure 5.1 using this method. It also has specifications of CiOOSE' and

CHlOOSE". Instead of using the procedure invocation itself to stand for tile result (or a

possible result in case of a nondeterministic procedure), we have introduced, for

convenience, a name for the result. For example, the specification of the procedure

REMOVE uses r to stand for the result of REMOVE on inputs s and i. Tie specification

captures that

(i) if the integer argument i is in the sequence argument s, then r is the sequence obtained

by first replacing the first occurrence of i in s by the topmost element in the sequence and

then getting rid of the topmost element; otherwise,

(i) r is s itself. In deriving these specifications, we have used the specification of the data

type Sequence-lnt given in Appendix IV.

5.2.2 Procedures - Approach II

We translate a procedure implemented in a rich imperative programming

language to a simple applicative language similar to the specification language proposed in

Chapter 3 using the method suggested by McCarthy 1561 (see 154] where the method is well

explained). Use the translated procedures to prove the correctness of the implementation 1.

Guttag et al. [29] and Kapur (401 take this approach: they use a language supporting

conditional expressions, composition, recursion, and the use of auxiliary functions.

Z . om



-189-

Figure5.4. Specificat ion oftlIhe Procedures in thle I mplemenlat ion of St-Mt Using .Approach I

NULIC) (= r)
r =-rep$NewO

INSERT(s, i) (0r
(ln'(s, i) =: r s ) A (- ln'(s, i) r =-rep$Addh(s, 0)

REMQVE(s, 0): (= r)
-'(3 j) [ = s[j] A (V j') [(j'< j i sfj'] IA

r rep$Remh(rep$Replace(s, j, rep$Top(s)))] V ( In'(s, i) r s)

HAS(s, i) C:b)

SIZE(s) 0:1
i -rep$Size(s)

CHOOSE(s) (i)
rep$Size(s) 0 => CHOOSE(s) signals no-elementO
rep$Size(s) > 0 =:,i -=s(1

CH-OOSE'(s) (:)
rep$Size(s) =0 ==: CHQQSE'(s) signals no-element()
rep$Size(s) > 0 z,( In(s, j) A (V j) [1 < j <5 -ep$Size(s) s[j] :5 i)

CHOOSE"(s) 0:j
rep$Size(s) 0 ==>CHOOSE(s) signals no-elementO
rep$Size(s) > 0 =*(In(s, 0) A ((V j) [ 1 < j : rep$Size(s) =>s[j] <i

V (V j) [ 1 < j < rep$Size(s) -= s~j ),

where ln(s, i) (3 j) [1 < j : rep$Size(s) A s [ji ]

We use an extended applicative language that has a signal prinmitive and guarded

exypressions in addition to comnposition and recursion mechanisms, and the uIsc of auxiliary

functions, so that the procedures signalling exceptions ind exhibiling nondeterministic

behavior can be specified. Conditional expressions can be simulated uIsing guarded

expressions. The translation method proposed by McCarthy can be extended to deal with

the exception handling mechanism and the nondeterministic Construct in a programming

language.

An expression is similar to a term, it uses procedure names implementing the

operations, internal procedure namres, the auiliary procedure names introduced during the



A-A085 BiT7 MASSACHAUSETTS INST OF TECH CAMBRIDGE LAB FOR COMPUTE--ETC F/6 9/2
TOWARDS A THEORY FOR ABSTRACT DATA TTPES. (U)
JUN 80 D KAPUR NOBOI4-7S-C-0661

UNCLASSIFIED MIT/LCS/TR-237 (4.

32 fllflfflflfflfllflf



-190-

translation, and terms.

The signal primitive takes arbitrarily many (nonzero) arguments; its first
argument is an exception name, and other arguments are expressions of various types. Its
syntax is signal(ex, e,.... e), where ex is an exception name with arity Di x ... x D

and each e. is an expression of type D.
A guarded expression is similar to Dijkstra's guarded commands; its syntax is

<guarded expression> ::= <expression> I <alternative> II <alternative> ]

(alternative> ::= <condition> =: <guarded expression>
(condition> = <boolean expression>,

where [ X ] stands for zero or finitely many repetitions, and the symbol 'i' stands for
nondeterministic choice among various alternatives. It' a guarded expression is simply an
expression, then its semantics is that of an expression. Otherwise, if a guarded expression is

a collection of alternatives, then for an instance of its variables, its semantics is the
semantics of the guarded expression of an arbitrarily chosen alternative whose boolean

condition is T. If every alternative has its condition as F, then the semantics of the guarded
expression is undefined. A guarded expression exhibits nondeterministic behavior because
for an instance of the variables, there are in general many alternatives whose condition is T,

and one such alternative is arbitrarily chosen. 3

We translate the procedures in the implementation of Set-lnt in Figure 5.1 to the

above applicative language. Figure 5.5 is their translation; we have also included the
translation of the procedures CHOOSE' and ClOOSE" as well as of the internal
procedures MAX and MIN. In translating the internal procedure INDEX, the auxiliary

function f is introduced to simulate the effect of the while loop used in INDEX. Similarly,

3. An alternatc approach to introducing guarded expressions for specifying the nondeterministic behavior of
a procedure 01' is to specify its non-exceptional behavior using a deterministic boo)lean auxiliary function
O'P, similar to the function ovp corresponding to a nondeterministic operation a as discussed in the
previous chapter. For an input on which the nondcetcrministic procedure returns a normal value, the
corresponding auxiliary function holds fir all possible values returned by the procedure on that input and
does not hold for other values. 'hen the procedures can be specified using conditional expressions and
recursion. We have adopted the above approach fi)r specifying the procedures, because it is direct and
simple.

- .- -



- 191-

the auxiliary procedures r and r, are introduced to simulate thefor loop in MAX and MIN

respectively.

Cartwright and McCarthy's first order semantics of recursive programs [8] can be

used to prove properties about the procedures written in the above applicative language.

The recursive definition of a procedure is considered as'an axiom defining the function

computed by the procedure. Because of the nondeterministic behavior of a guarded

expression, we have to be careful in using such an axiom, or we will run into

inconsistencies. For a particular instantiation of variables in the axiom, we use every

possible alternative whose condition is T, and we do not relate any two alternatives whose

conditions are T. For example, for CIHOOSE", there are two alternatives, NIAX(s) and

MIN(s), for the case (- rep$Size(s) = 0). We do not equate MAX(s) to MIN(s), as relating

them can cause inconsistency. The termination of a procedures is proved separately either

using the method suggested by Cartwright and McCarthy, or the method based on well

founded ordering [14].

The translational approach is purely based on the semantics of the control

structures of the host programming language in terms of the primitives of the applicative

language incorporated into the translation method. The properties of the types involved in

the implementation can be used in simplifying the resulting translations.

5.2.3 Properties of the Encapsulation Mechanism

As was stated earlier, in most of the programming languages supporting user

defined data types, an implementation of a data type is an encapsulation of the procedures

implementing the operations that disciplines their use. Such an implementation is

protected: A procedure implementing an operation of D cannot be passed any arbitrary

value of the rep as a representation of a value of D; rather only a value of the rep

constructed earlier as a representation for a value of D by the constructor procedures of D

can be passed. Every.value of the rep need not in general be used to represent a value of D.

The procedures are invoked only on those values of the rep which can be constructed by

finitely many applications of the constructor procedures of D. (For example, the procedure

REMOVE in the implementation of Set-lnt in Figure 5.1 is never passed a sequence having



-192 -

Figure 5.5. Translation of the Procedures in the Implementation of Set-lot

NULL 0 A rep$NewO

INSERT(s, 0) INDEX(s, 0) 5 rep$Slze(s) =* s f
(- INDEX(s, 0) 5 rep$Size(s)) =* rep$Addh(s, 1)

REMOVE(s, I)4INDEX(s, 0) 5 repSize(s) =9
rep$SRem h(rep$Replace(s, INDEX(s, 0), repSTop(s)))

(-h INDEX(s, 0) 5 repSSize(s)) =* s

HASNs, I)4 NDEX(9, I) rep$Size(9)

SIZE(s, i) 4repSize(s)
CHOOSEWs rep$Size(s) = 0 =* signal(no-element)*

(-h rep$Size(s) =0) =s rep$Bottom(s)

INDEX(s, 1) A O~s, 1, 1)

CHOOSE'(s) A rep$Size(s) = 0 => signal(no- element)*
(-~ rep$Size(s) = 0) =:D MAXWs

MAX(s) 4 f'(s, repSBottom(s), 2)

CHOOSE"(s) =repSSize(s) =0 =v signat(no-etement) f
(''rep$Size(s) =0) => MAX(s)
(''rep$Siz.(s) = 0) :* MIN(s)

MIN(s) A f"(s, rep$Bottom(s), 2)

Auxiliary Functions

f : rep Xlnt Xlnt-Int
V : rep X mnt X mnt - nt
11" : rep X tnt X tnt I nt

08s, 1, c)0 (- C < rop$S~iz(s)) =:I C
(C < repSSize(s)) A (rep$Fetch(s, c) a ) =: c3
(c < repSSize(s) A -(repSFetch(s, c) = 1) :> f(s, 1, c +1)

f'1(s, m, c)0 (-~ c < rep$Size(s)) =* m Il
(( < rep$Size(s)) A (m < rep$Fetch(s, c))) => N's, rep$Fetch(s, c), c. 1) f
k( < rep$Size(s)) A ( m < rep$Fetch(s, c))) =* N's, m, c.+ 1)

1 19, m, 0) C <" rep$Size(s)) m3
k( < repSSize(s)) A (in> repSFetch(s, c))) =* f "(s, repSFetch(s, c), c.)f
k( < rep$Size(s)) A (- mn> rep$Fetch(s, c))) 1 f"(s, in, c.1



-193-

multiple occurrences of an integer, as such a sequence cannot be constructed using NULL,

INSERT and REMOVE.) We are interested in the behavior of the procedures only on this

subset of the values of the rep. The subset is characterized by the formula Inv(r) discussed

in the previous section, which expresses the strongest unary relation on the values of the

rep preserved by the constructor procedures of D. inv(r) is expressed without alluding to

any particular implementation of the rep type.

De. 5.2 A procedure OP implementing a constructor a: Di X ... X Dn - DpreservesInv

if and only if

whenever ((V I < i < n) [Di = D =* InvlxI I ), then

(i) if OP(xl,..., xn) returns a normal value, lnvIOP(x,,..., x,)I; otherwise,

(ii) if OP(x,,..., x) signals ece,..., ek), then for each e, of type D, Inv[ei.

If OP is nondeterministic, all possible results returned by OP must satisfy Inv. I

For the implementation of Setl-nt given in Figure 5.1, nv(s) is

(v i, j) I (I < L j < rep$Size(s) A i * j) =* s [il; sil 1,

where s[i] is an abbreviation for rep$Fetch(s, i). It can verified that nv(s) is preserved by

the constructor procedures of Set-int. Figure 5.6 is a proof that REMOVE preserves nv(s),

the most difficult among the three cases. Any predicate stronger than the one above is not

preserved by the constructor procedures.

Inv may be difficult to deduce from a complex implementation, but the designer

of an implementation usually has a good idea about what Inv is. In the correctness proof,

Inv is usually not necessary; a weaker property may suffice. In case Inv is available, a

property of the representing values needed in the correctness proof can be deduced directly

from Inv. Otherwise, if Inv is not available, then the property can be deduced by checking

whether the property is preserved by the constructor procedures; since Inv is the strongest

unary relation preserved by the constructor procedures, any unary relation preserved by

the constructor procedures is implied by Inv.

Ira module implementing an abstract data type in a programming language is not

protected, as would be the case if abstract data types are simulated in PASCAL or PL/I,

say, then



-194-

Figure 5.6. Proof of REMOVE Preserving Inv

Assume Inv(s) holds. To show that lnv(REMOVF(s, i)) holds.
If type name is not included in the operation names below, we assume that the operation are of type rep.
There are two cases.

Case 1: INDEX(s, i) _5 Size(s)
Size(s) > 0 < = => ', from he specification of INDEX
lnv(REMOVEs. i))e:, Inv(Rcmh(Replace(s. INDEX(s, i),'rop(s)))), from the specification of REMOVE

It can be shown using the specification of INI)FX and the theory of Sequence-hi that

(i) ( Inv(s) A 0 < k < Size(s) A s' = Rcplace(s, k, j) ) =*
(((V ki)I kl <Size(s)A - k = ki I=*, s'lkll-sqkl])Ask- j)

(ii) (Size(s) >0 A s' _ Remh(s)) =* (V k) 1 (1 < k < Size(s')) == (s'[kJ - s[k] A Size(s') Size(s) -1)J

Using (i) and (ii). we have Inv(RI MOVE(s, i)) P T

Case 2: - INIDX(s, i) _5 Size(s)
Inv(REMOVEls. i)) Inv(s), from the specification of REMOVE

(i) restrictions must be imposed on the global variables, if any, as well as on the use of the

procedures implementing the operations to enstre the minimality property of the

implementation, and

(ii) Inv must be preserved wherever a procedure implementing an operation is invoked.

Such a proof is likely to be global and complex. (Guttag [31] discusses restrictions on the

Euclid implementation module to ensure that the module satisfy the minimality property.)

In the following discussion, we assume that the semantics of a mechanism encapsulating

the procedures implementing the operations of a data type ensures the minimality

property.

It is not necessary for the procedures to terminate over their entire input domain

if Inv(r) is other than T. To prove total correctness of an implementation, it is sufficient

that a procedure implementing an operation a that has its i-th argument xi to be of type D

terminates whenever Inv[x] holds.



- 195 -

5.2.4 Semantics of an Implementation

Now that we have the procedure specifications, we can construct the

implementation algebras of I using them. Since procedures specifications may use internal

types and internal and auxiliary procedures, we first construct the extended

implementation algebras and then derive the implementation algebras from them. For

every possible implementation 1' of a type D' used in the implementation 1, we have the set

of its implementation algebras. In an implementation algebra of l, the domain

corresponding to D' is the domain defined by an implementation algebra of I'. An

extended implementation algebra A' of I has the following structure:

A' = [I V)}U{ VlID' EAUII,EXV;{ioEO UI P} I. 4

Vi= v v VE A Inv(v) }. The function i is the interpretation of the specification of

the procedure corresponding to a in A'. From A', we get an implementation algebra A

A = [I V' U{ VD, I D' EA , EXV; { i. IoE 0 1.

4. In addition to the internal procedures, I is assumed to include the auxiliary procedures needed in the
translation of the procedures into the applicative language discussed above.

&i



-1%.

5.3 Correctness Method

We describe the remaining steps of the correctness method outlined in

Subsection 5.1.2. For completeness, we repeat the steps discussed in the previous section
about the termination of the procedures and the preservation of the formula Inv. For a

specification specifying nondeterministic operations, we discuss the method for three cases:

An implementation of a nondeterministic operation is (i) a deterministic procedure, (ii) a

nondeterministic procedure, and (iii) a pseudo-nondeterministic procedure. We first use
the implementation of Set-lnt given in Figure 5.1 with CIHOOSE replaced by CI lOOSE'

for illustrating the method for the deterministic case. Later, we use CIlOOSE" as the
implementation of Choose to illustrate the method for the nondeterministic case, and

finally, we use CI lOOSE to illustrate the method for the pseudo-nondeterministic case.

5.3.1 Auxiliary Functions in a Specification

If a specification S uses auxiliary functions and auxiliary types, we extend an
implementation I to include the implementations of the auxiliary functions in the
correctness proof. We include in the specifications of the procedure of I, the specifications

of the implementations of the auxiliary functions. For showing the correctness of I, we use

the extended implementation, instead of I in the following steps; an auxiliary functions is
treated like an operation. In the following discussion, whenever we say 1, we mean the

extended implementation ifS uses auxiliary functions.

5.3.2 Preservation of Inv

If the formula Inv(r), which characterizes the subset of values of the rep used to
represent the values of D, is available, verify that Inv(r) is preserved by every constructor

procedure. We showed in the previous section that for the implementation of Set-Int in

Figure 5.1, its Inv is preserved by every constructor procedure.

If Inv(r) is not available and cannot be guessed easily, we temporarily assume that
every value of the rep is being used to represent the values of D. In the derivation of the

axioms and restriction of S from the procedure specifications, in case we need any property



-197-

P(r) of the rep values, we deduce P(r) by showing that P(r) is preserved by the constructor

procedures of D, as in that case Inv(r) would imply P(r).

In the derivation of an axiom or a restriction in S from the procedure

specifications, a variable of type D is instantiated to a value of the rep satisfying lnv(r) (or

P(r) if Inv(r) is not available).

5.3.3 Termination of Procedures

Prove that every procedure in I is total on the arguments it can expect, i.e., if an

argument to a procedure is of type D, prove that the procedure terminates if these

arguments are values of the rep satisfying Inv(r).

5.3.4 Proving Restrictions and Axioms

Show that every restriction in S specifying the exceptional behavior and every

axiom in S specifying the normal behavior can be derived from the specifications of

procedures in 1. The operation symbols and the auxiliary function symbols in the axioms

and restrictions are replaced by the names of procedures implementing them. The theories

derived from the specifications of the defining types, the rep, and internal types can be

used in the derivations.

The symbol a in S is interpreted as the observable equivalence relation. =D is

usually interpreted as the largest equivalence relation on the values of the rep satisfying lnv,

preserved by the procedures. The exception is the case when a nondeterministic operation

is implemented as a pseudo-nondeterministic procedure. Then, the observable equivalence

relation serving as the interpretation of -I) is required to be preserved only by the

procedures implementing deterministic operations, and it need not be the largest such

equivalence relation.



- 198 -

5.3.4.1 Preservation of Equivalence Relation

A deterministic procedure OP implementing an operation "D x...x D -. 1

preserves an equivalence relation on the rep values, expressed as a first order formula

Eqv(s,, s2), where s1 and s2 are of rep type, and are the only free variables in the formula, if

and only if for each 1<i<n, ([ Di = D =: Eqv(x i, yi) ] A [ D, :4 D =: x, = y, I ), either

(i) 'OP(x],..., x) signals ext1" holds and 'OP(yI,..., yn) signals exi2' holds such that

'ext- ext2' is provable. In addition to the rules discussed in the previous chapter, we

have: For an exception name ex of arity Dl x...x D', if for every D' = D, Eqv(x', y), and

for every D' ;4 D, x' y, then ex(x .... x) ex(y',.... y') is provable. Or,
Si - I I n

(ii) If D' = D, then 'Eqv(OP(x i ..... x), OP(yl,..., yn))' is provable, and if D' : D then

'OP(xI ..... xn) --D, OPO' .... J,)' is provable.

If OP is nondeterministic then (ii) above is modified to be: If D' = D, then for every

possible result r, returned by OP(xl,..., x), OP(y1,..., y.) can return r2 such that Eqv(r l, r2) is

provable, and vice versa, and if D' : D, for every r, returned by OP(x,..., x), OP(y,..., y.)

can return r2 such that 'r, -, r2' is provable and vice versa.

For example, Eqv(sl, s2) for the implementation of Set-nt in Figure 5.1 with

CIIOOSE' replacing CI lOOSE is

(SI$Size(sl) a Sl$Size(s2)) A (v i) 1 IN(sl, i) - IN(s2, i) 1, where

IN(s, I) = (3 j) I I < j < SI$Size(s) A sUl - i 1.

It relates sequences that are permutations of each other. Eqv is preserved by every

procedure implementing an operation of Set-Int. Figure 5.7 has the proofs for the

procedures INSERT and HAS. Eqv(s,, s2) is the largest equivalence relation preserved by

the procedures. Any equivalence relation stronger than Eqv would have to relate sequences

that are not permutations, and is thus not preserved by HAS.



-199-

Figure 5.7. Proofs that INSERT and HAS Preserve Eqv

F-or INSERT

assume FA'isI. s2), to show that (V i) Eqv(1NSIER'I'(sl, i). INSERT(s2, i))

Case 1: INI)FX(sl, i) <, SI$Size(sl) =-T
Using Iiqv(s]. s2), we have INI)FX(s2. i):5 SI$Sizc(s2) =-T, so
INSFRTI(sI. i) =-sI, INSI-RT(s2, i) s2, so Fqv(INSFiR'I'(s1, i), INSI-RT(s2, i)) T

Case 2: INI)EX(sI. i) < SI$Size(s2) F
Using Fqv(sl. Q2), wc have IN]DE-X(s2, i):5 Sl$Sizc(s2) F, so
INSER'(lsI, i) =-Addh(si. i), INSFRI'(s2. i) =-Addh(s2, i), so

For HAS

From thc semantics of INDEIX we have
(i) IN DFX(s, i) > 0 =- T,

Casei) INDEX(s. i) SI$Size(sl) T[NF~,j)aj
siii INIWX(s. i) ) Sizs) ( )0<i:S$ies) s i

singe Eqv(sl, s2), t swee (V i) 1(1 i) =- S$S(s2As2I=J, so

H AS(sl, i) -=INAS-(s, i) T ISz~l

Case 2: INDlX(s. i) < SI$Size(sl) F-

Using Fqv(sI, s2), anwe abovej)[ I jat abou S$iDze~) get i s
IN )EX(s2, i) :5S I$Size(s2) F, To
HAS(sl. i) =- HAS(s2, i) F*

5.3.4.2 Restrictions

For a restriction specifying a required exception condition ofre,

R1 (A') * o'(X) signals ext

show that whenever PO(X) and R1(X) interpreted in I hold, the procedure OP

implementing a must signal exi. For example, the specification of Set-tnt specifies the

following required exception condition for Choose in its restrictions component:

#(s) 0 =o Choose(x) signals no-elementO.

So the procedure CI lOOSE7 must signal no-elemento when SIZE(s) =0



- 200 -

(= SI$SIZE(s) = 0) holds, which is indeed so (the precondition specified for Choose is T).
For a restriction associating an optional exception condition with a,

a(X) signals exi =* O@(X),

show that whenever the procedure OP implementing a signals ex, P (X) and O(X)

interpreted in I hold. For example, the specification of Stk-lnt given in Figure 3.2 specifies

the following optional exception condition for the operation Push:

Push(s, i) signals overflow(s, i) t #(s) > 100.

In an implementation of Stk-Int, if the procedure implementing Push signals overflow, then.

the size of the input stack must be > 100.

We must also show that (i) if an input to a procedure OP implementing an

operation a satisfies its precondition, does not satisfy the condition for any of its required

exceptions or optional exceptions, then the procedure terminates normally. Let
CMX (PoC, 0 A It" I (A) A... A - RAX) ) A ( X) ( A ... A - Orn(X)),

where for 1<i</, Ri is the condition when a is required to signal exi, and for 1j5m, 0 1 is

JJthe condition when a has the option to signal an exception exl.. We show that C(X) implies
TCn (X), where TC (X) is the weakest input condition for OP to terminate normally.

For example, for every procedure in the implementations of Set-lnt, the above condition is

satisfied.

If a nontrivial precondition P. is specified for a constructor a, then the procedure

OP implementing o either signals on input X not satisfying PC, or returns a rep value

which can be constructed by a constructor procedure using an input satisfying its

precondition. For example, a correct implementation of Sik-Int can have the procedure

implementing Pop return a stack when applied on an empty stack. If the procedure

implementing Push signals overflow on a stack of size 128, say, then the procedure

implementing Pop can only return any stack of size < 128. It cannot return a stack of size

1000, say; allowing it to do so would be meaningless.



- 201 -

5.3.4.3 Axioms

In the derivation of an axiom, we ensure that (i) for every occurrence of a
procedure name OP implementing the operation o, the input to OP must satisfy the

precondition P. associated with a, and (ii) no sibexpression signals any exception.

If an axiom is an equation of the form 'e, = e2,' we prove that its interpretation in

I is derivable. If e, and e2 are of type D, - is interpreted as Eqv; otherwise, the

interpretation of el - e2 in I can be derived using the theories constructed from the

specifications of the rep, the defining types, and internal types.

If an axiom is of the form 'e, = if b then e2," we have to prove that 'b =* e - e2'

when interpreted in I is derivable. Similarly, for an axiom 'e, = if b then e2 else e 3 we must

prove that 'b =, e, - e2' and '- b - el = e3' are derivable in i. Recall that the condition b is

assumed to behave deterninistically even when it involves nondeterministic operation

symbols. Figure 5.8 is a proof that the then part of the axiom,

Remove(insert(s, il), i2) - if il = i2 'Then Remove(s, i2) else Insert(Remove(s, i2), it),

is derivable. The derivation of the else clause,

(- iI = i2) Remove(Insert(s, il), i2) = Insert(Remove(s, i2), it),

uses a property of the representing values that

(V i) [ (rep$Size(s) > 0 A In(s, i)) => (3 ! j) I I < j < rep$Size(s) A sQ] i 1,

Figure 5.8. Proof that an Axiom of Set-lnt is Derivable

il = i2 ; Renove(Insert(s, il), iZ) - Remove(s, i2)

Assume il = i2, to show Eqv(RFMOVtF(INSERT(s. il). i2). REMOVE(s, i2))

Case 1: INI)EX(s, il) _ rcp$Size(s) - T
INSERT(s. il) - s. so the above holds.

Case 2: INDEX(s. il) _ rcp$Size(s) - F
Let r -= INSERT(s, il) = Addh(s, il)
Using il = i2, INI).X(r, i2) = rep$Sizc(Addh(s, il)), so
REMOVFr, i2) s, and
RIEMOVF~s, i2) s, so the above holds.



- 202 -

which is preserved by the constructor procedures. 5

The axiom 'Choose(s) E s M T under the condition ' Size(s) = 0,' when

interpreted in I is 'IIAS(CHOOSE'(s), s) T.' This is derivable, because

'INI)EX(MAX(s), s) < rep$Size(s) - T' is derivable. The remaining axioms in the

specification of Set-int can also be shown to be derivable.

The above five steps constitute the correctness method, If an implementation I

can go through the above steps, it is correct with respect to S. For example, the

implementation of Set-int given in Figure 5.1 with CllOOSE replaced by CI lOOSE' goes

through the above steps, and is thus correct.

5.3.5 Nondeterministic Procedures

We now consider the case when an implementation has a nondeterministic

procedure implementing an operation specified to be nondeterministic by S. We have

already discussed the conditions for a nondeterministic procedure to preserve Inv and the

equivalence relation Eqv. Varioussteps in the correctness proof discussed above remain

the same except that if an axiom involves the nondeterministic procedure, we must use the

interpretation of formulas involving nondetenninistic function symbols discussed in

Chapter 4. In addition, it must be ensured that for any input, the nondeterministic

procedure does not have a choice of signalling as well as terminating normally.

For example, if we consider the implementation of Set-lnt in Figure 5.1 with

CHOOSE replaced by CHOOSE", most of the above proof remains valid. We have to

show that the axiom 'Choose(s) E s - T' is derivable under the condition '- Size(s) = 0.'

That is, if 'rep$Size(s) > 0' holds, then

HAS(s, Cl IOOSE"(s)) -= T (*)

is derivable. CIIOOSE'(s) can either return MAX(s) or MIN(s). For both possibilities, ()

is derivable, as

INDEX(MAX(s), s) < rep$Size(s) - T

5. (3 1 j) stands for 'there exists a uniquej such that.'



-203-

is derivable from the specifications of MAX and INDEX, and

INDEX(MIN(s), s) < rep$Size(s) - T

is derivable from the specifications of MIN and INDEX. Note that CHOOSE" preserves

the equivalence relation Eqv.

The implementation of Set-nt in Figure 5.1 with CHOOSE replaced by

CllOOSE" is also correct.

5.3.6 Pseudo-Nondeterministic Procedures

A pseudo-nondeterministic procedure (which could be either deterministic or

nondeterministic) is not required to preserve the equivalence relation Eqv. 6 The

correctness proof in this case also is carried as above depending oil whether the procedure

is deterministic or nondeterministic. However, we must ensure that if the procedure

terminates normally for any input X, then it must do so for all input equivalent to X, and if

it signals on an input X, then it must signal equivalent exceptions for all input equivalent to

X. This ensures that a pseudo-nondeterministic procedure does not have a choice of

signalling as well as terminating normally on equivalent rep values.

We now take the implementation of Set-nt in Figure 5.1. CHIOOSE is

deterministic; it returns the bottom element of the nonempty sequence. Eqv is not

preserved by CHOOSE. If the axiom 'Choose(s) E s = T is derivable under the condition

that 'Size(s) : 0,' then this implementation is also correct. The proof of the axiom is

straightforward: If 'rep$Size(s) > 0' holds, then

IIAS(s, CIlIOOSE(s)) - T - IIAS(s, Bottom(s)) T

When an implementation does not have any pseudo-nondeterministic procedures,

then the interpretation of- in I is the largest equivalence relation preserved by the

procedures. However, a weaker equivalence relation preserved by the procedures may

suffice to show that the restrictions and axioms of S hold in 1.

6. For example, a procedure CIIOOSE"' which nondetcrministically picks between the top (last) and the
bottom (first) element of the sequence is nondeterministic and does not preserve the equivalence relation Eqv.
So. Cl lOOSE"' is also pseudo-nondetenfninistic.



- 204 -

Though the designer of an implementation usually has an idea of what the

observable equivalence relation is, sometimes it may not be known. In that case, we will
not know what procedures are pseudo-nondeterministic. Then, we choose an equivalence

relation preserved by the procedures implementing the deterministic operations, and using

it as the interpretation of =-, we attempt to show that every axiom as interpreted in I isI
derivable. If successful, the implementation I is correct; otherwise, a stronger equivalence

relation is chosen and the above process is repeated. If the correctness of I cannot be

established even when the strongest equivalence relation preserved by the procedures

implementing the deterministic operations is chosen, then [ is incorrect.

Another way to view the above correctness method is to consider the specification

of the procedures in an implementation I as axioms of the theory of 1, defining the

functions computed by the procedures, and show that every nonlogical axiom of Th(S) is in

the theory of 1. The theory of I also includes the theories of the types used in 1. Nakajima

et a] [62] take a similar view.



- 205 -

5.4 Recursive and Mutually Recursive Implementations

Def. 5.3 An implementation I of D depends on a data type D' iff only if

(i) D' is used in I, or

(ii) a data type D" used in I depends on D'. I

In Def. 5.3 above, it is assumed that data types other than D are abstractly used in

an implementation I of D. In the correctness method discussed in the previous two

sections, we have assumed that

(i) an implementation i or D does not depend on D, and

(ii) an implementation of a data type D' used in I does not depend on D.
We relax these constraints. We call an implementation I of D recursive if and only if the

rep used in I depends on D. We call an implementation I of D and another

implementation l' of D' mutually recursive if and only if I depends on D' and I' depends on

D. We assume that recursion is not due to internal types used in i. It should be noted that

if the implementations of a set of data types are mutually recursive, that does not mean that

data types are also mutually recirsive (mutually recursive data types are discussed in

Section 2.4). We first discuss how the method proposed in Section 5.3 be modified to deal

with recursive implementation, later we consider mutually recursive implementation.

5.4.1 Recursive Implementations

In proving correctness of a recursive implementation,. we consider a reference to

Figure 5.9. An Uninteresting Recursive Implementation of D

D = cluster is OP1. OP2 ...
rep = D

OP, = proc(...) returns....
return (DSOP1 (...))
end OP,



-206-

D in I as a reference to its rep and an invocation of an operation a of D as a call to the

procedure OP implementing a. The equate defining the rep inside I is considered as a

recursive domain equation, as the construction of the rep depends on D itself. For

Figure 5.10. Implementation of List-lot

LUST-INT1 = cluster is NIL, CONS, CAR, CDR, IS-IN, ISY.MPTY

rep = oncof empty: Null, pair: Pair]

Pair = struct car: Int, cdr: List-Intl

NIL. = proc() returns (cvt)
return (rcp~make....mpty(nil))
end NIL

CONS = proc(i: Int, 1: List-Int) returns (cvt)
return (rcp~make..pair(PairSjcar:i, cdr:lJ))
end CONS

CAR = proc(l: cvt) returns (Int) signals (empty)
ta-s

tag pair (p: Pair): return (pcar)
tag empty: signal empty(
end

end CAR

CDR = procol: cvt) returns (List-Int) signals (empty)
tase I
tag pair (p: Pair): return (p.cdr)
tag empty: signal empty()
end

end CDR

IS-IN = proc(i: mnt, 1: cvt) returns (Bool)
tagcaselI
tag pair (p: pair): if p.car = i then return (true)

else return (I ist-Int$is-in(i. p.cdr)) end
tag empty: return (false)
end

end IS-IN

ISJMPTlY = proc(1: cvt) returns (fool)
return (rep~is-emptyO))

end IS-.EMIT



- 207 -

example, consider the implementation of a data type list of integers, denoted by List-Int,
given in Figure 5.10; its rep is a recursive domain equation. A recursive domain equation

can be solved by defining an ordering on type algebras and using Kleene's Recursion

Theorem. The rep is the least fixed point solution of the equation (see [3] for details about

such an ordering).
For a correct implementation I, the type algebras of the rep should have a

nonempty principal domain. This property is trivially ensured if rep is nonrecursive. For

some recursive implementation such as the one given in Figure 5.9, the least fixed point is
the empty algebra, an algebra having no domain and no functions. For well founded rep

equates such as in case of List-lnt, the algebras are nonempty. If the rep can be proved to

be nonempty, the method proposed in the previous section can be used. The proof that the

least fixed point of a domain equation defining the rep is nonempty is the only additional

step in proving the correctness of a recursive implementation.

Figure 5.11 has specifications of the procedures in the implementation of List-Int.

(The specifications of Null, Struct In1: D1 ,..., nk: Dk], and One-of In,: D , .... nk: Dkj are
given in Appendix IV.) Figure 5.12 is a specification of List-Int. We give below a sketch

of various steps in the correctness proof of the implementation of List-Int given in

Figure 5.10.

Figure 5.11. Translation of the Procedures of List-lnt

rep : oneof [ empty: Null, pair: Pair]

Pair struct [ car: Int, cdr: Llst-Int]

NILO rep$make-empty(nil)

CONS(i, I) A rep$make..pair(Pair$(car: i, cdr: I))

CAR(I) rep$is.pair(l) = Pair$get-car(rep$valuepair())
- rep$is.pair(l) =* signal(empty)

CDR(l)- rep$is-pair(I) = Pair$getcdr(repSvaluepair(I))
rep$is.pair(I) = signal(empty)

ISN(i, I) - rep$is-pair(l) (I = Pair$get-car(rep$value-pair()) V
ISIN(i, PairSget-cdr(rep$ value-pair(I)))

N rep$is..pair(I) =0 false

ISEMPTY(I) rep$is-empty(I)



Fgure 5.12. Specification or List-Int

Operations

Nil :-4 List-mnt
Cons : mt X List-mnt --+ List-mnt
Car :List-mnt -. t

empty(
Cdr LiUst-mnt -. Lst-tnt

-empty(

Isin : mt X List-mnt --+ Boet
Is-Empty: List-Int - 8001

Restrictions

Is-Empty (1) Car(l) signals empty C
Is-Empty (1) Cdr(l) signals empty C

Axioms

Car(Cons(l, I))=.
Cdr(Cons(i, 0))a I
Is-In (1, Nil).a F
Is-In~i , Cons(12, 1)) =_ I 11= 12 then T else Is-In (11, I)
Is-Empty(NI0 ). T
ls-Empty(Cons(i, 0) a F

(i) the least fixed point of the recursive domain equation is nonempty. For any model of

mnt, the approximations to the rep can be constructed.

(ii) Inv(s) is T.

(iii) The termination of procedures other than IS-IN is obvious, assumi ng that the

tagcase, and the operations of one-of terminate. For IS-IN, we can prove termination

using McCarthy and Cartwright's approach, or by using the fact that the rep is well

founded with respect to the ordering, 1< one-of [pair: [car: i, cdr: I U for any i and I.

(iv) the equivalence relation on the rep is the identity relation.

(v) The procedures return normally on an input on which the restriction component does

not specify the corresponding operation to signal.

(vi) Every restriction is derivable.

(vii) Every axiom is derivable.



-209-

5.4.2 Mutually Recursive Implementations

We prove the correctness of mutually recursive implementations in a way similar

as in case of a recursive implementation. The correctness of mutually recursive

implementations must be proved together. The reps of the two implementations are

specified as mutually recursive domain equations; the solution of these equations are the

least fixed points, which serve as the rep of D and the rep of D'. For the implementations I

and I' to be correct, both reps must be nonempty. The rest of the proof is same as in case of

nonrecursive implementations with the exception that the correctness proof for all mutually

recursive implementations is done together. The implementations I and ' have to be

shown to satisfy the restrictions and axioms in S and S'. The invocation of an operation of

D' in I is considered as a call to the procedure in ' implementing the operation, and the

invocation of an operation of D in ' is considered as a call to the procedure in I

implementing the operation.

The correctness proof cannot be hierarchically structured in case of mutually

recursive implementations, because their correctness has to be proved together. For Lhis

reason, we do not recommend that hierarchically structured (nonrecursive) data types be

implemented mutually recursively. However, for a set of mutually recursive data types,

their implementations have to be proved correct together, so these data type can be

implemented mutually recursively without adding to the complexity of the correctness

proof.

aL



- 210 -

6. Conclusions

We have presented a rigorous framework for abstract data types, and studied four

important aspects of abstract data types, namely, definition, specification, theory, and

implementation correctness, within this framework. An overview of the approach taken in

studying these issues is given in Chapter 1. The framework has provided a base from

which to to ask many interesting and important questions about data types. Some of these

questions have been answered in the thesis, while others Suggest directions for further.

research. Below, we first summarize the contributions of our work and then indicate areas

where fuirther work is required.

6.1 Summary of Contributions

We have made a clear distinction between a data type and its specification(s) in

our research. The behavioral approach for defining a data type developed in the thesis

embodies the view of a data type taken in programming languages. It considers only the

input-output behavior of the operations. lt abstracts from the representational structure of

the values and the operations of a data type as well as from multiple representations of

values for a particular representational structure. Our definitional method can handle data

types with nondeterministic operations and with operations exhibiting exceptional

behavior. It is independent of specification methods for data types. Specification

languages other than the one proposed in the thesis can also be developed based on it. It

can be used to give the semantics of existing specification languages. In [43], we have

studied and compared the expressive power of various specification languages for data

types. Using the definitional method, we have been able to characterize computability over

the values of a data type, and study the expressive power of the operation set of different

designs of a data type [42].

The specification language proposed in the thesis is structured and flexible. The

normal behavior and the exceptional behavior of the operations are specified separately.

The language provides mechanisms to specify (i) nondeterministic operations, (ii)

preconditions for operations stating what portion of the input domain of an operation is



-211-

intereshing, (iii) exceptions which must be signalled by the operations, and (iv) exceptions

which the operations can optionally signal. In designing the specification language, one of

the goals has been to facilitate writing specifications as well as proving properties of data

types from their specifications without having to express the properties that can be

deduced. The semantics of a specification is given as a set of data types. Equivalence

among specifications is defined.

We have proposed a deductive system for abstract data types and studied its

different components. A first order theory of a data type is defined, which is constructed

from its specification using tile deductive system. The well definedness, sturncient

completeness and completeness properties of a specification are defined based on what can

b~e deduced from it. These properties are related to the model theoretic properties of a

specification. A clear distinction is made between the model theoretic and proof theoretic

properties of a specification.

We propose a correctness criterion for an implemnentation of a data type with

respect to its specification, independent of implementation correctness methods and

specification methods. Many inmplementation correctness methods can be developed

embodying this criterion. We develop a correctness method which is simple and natural

for a wide class of specifications.

Throughout this research, we have emphasized modularity and hierarchical

structure, be it the definition, specification, deductive system, or implementation of a data

type.
The development of the framework has also provided useful insights into data

type behavior and the programming language features, such as the advantage of having a

protected encapsulation mechanism for implementing a data type, separation of the

exception handlers from the type behavior, significance of hierarchical structure and

modularity, etc.



-212-

6.2 Directions for Further Research

We first discuss topics of further research emerging from the discussion in various

chapters. We later discuss other aspects of data type behavior not studied in the thesis, and

finally, the topics in which the assumptions made about data type behavior in the thesis are

relaxed.

We have not investigated how easily the deductive system proposed in Chapter 4

can be automated or incorporated into an existing automatic data type deduction system
such as AFFIRM. We do not anticipate any major problems in incorporating the
subsystem for reasoning about tie exceptional behavior of a data type, because the axioms

describing the exceptional behavior are simiilar to equations and can be transformed to
rewrite rules. However, the Subsystem for reasoning about nondeterministic operations

involves axioms using existential quantifiers. A verification system based on first order

predicate calculus canl in principle incorporate this subsystem. We feel that thle full power
of first order predicate calculUS With its complexity is not required. An approach for
untransformed axioms (in which properties are expressed using noindeterministic symbols)

similar to rewrite rules for equational axioms needs to be investigated.

The implementation correctness method discussed in Chapter 5 uses an
equivalence relation on the values of the rep (representing type) and requires that the
implementation be extended to include the definitions of auxiliary functions used in a

specification, if any. It would be useful to develop a method that can derive this
information from the specification and the implementation. We do not anticipate any

problems in automating the remaining steps of the method; however, the interface between

a verification system embodying proof rules for control structures and a data type

deduction system may need to be analyzed. We are investigating another method that does
not require the equivalence relation and the definitions of auxiliary functions for an
implementation. It is based on the behavioral equivalence relation on models: For every

computation having an observer as its outermost operation, if the specification prescribes a
result, a valuie returned by the computation when interpreted inl the implementation must

be one of the possible results prescribed by the specification.

The proposed implementation correctness method tells whether an



-213-

implementation is correct with respect to a specification. It would be interesting to extend

it so that the bug(s) in a incorrect implementation can be located; this would help in

debugging the implementation.

Another complimentary area for further study is that of systematic testing for

enhancing confidence in a piece of software. In addition to using it for testing programs

using the data type, a specification of a data type can be used to design a set of test cases for

checking the implementations of the data type. Gannon et al. [19] disiuss a system in

which a specification of a data type as a set of conditional equations is presented along with.

a set of test cases which can be executed using the implementation to test for the

consistency of the implementation with the specification. A methodology for designing an

adequate' set of test cases from a specification would be very Liseftil for such a system.

Specifications are often hard to write, and especially the writing of an 'algebraic'

specification has been found to be hard [41, 3]. We are investigating a method for writing a

specification in a systematic manner; using this method, we have been able to write

specifications of data types such as traversable stack 141], file [42], etc. A system that

embodies such a method and helps a designer in writing a specification would be very

useful. It should assist the designer in analyzing a specification so as to enhance his

confidence in the specification. It should check for general structural properties of a

specification such as well definedness and completeness, which ensure proper relations

among different components of the specification. The undecidability of completeness and

well definedness can be shown by reducing them to the Post Correspondence problem [58]

in Post systems. However, sufficient conditions on axioms and restrictions which guarantee

well definedness and completeness of a specification need to be investigated. The results of

Guttag and Horning [28] and Polajnar [671 will probably be helpful in arriving at these

conditions.

It is equally important to ensure that a specification indeed captures the intent of

the designer. This can be checked in several ways, some of which are complimentary: The

designer can express'additional properties that a data type should satisfy. He then attempts

to prove these properties from its specification using the deductive system. Another

approach is for the designer to come up with a model of the data type and then check that



- 214 -

the axioms and restrictions hold in that model. Third approach can be similar to program

testing: the specification can be validated on a set of test cases.

Guttag aqd Horning 132] have suggested how formal specifications can be used as

a tool for designing software. Our specification language can be used to aid the design of

the data component of software. For it to be used for writing specifications of general
software, it must be extended to include mechanisms for specifying mutable behavior,

procedural abstractions, other control abstractions, etc.

An important aspect of data types not studied in our framework is the

relationships among different data types. One important relationship is among the set of

data types defined by a type scheme (also called a parameterized type). Data types in the
set defined by a type scheme have similar behavior except that the values of these data

types may have their constituents belonging to different types, and the values may have

different structural constraints, for example, different upper bounds on the size of the

values, etc. This variation in the behavior of different types is expressed using two kinds of

parameters: Constant parameters ranging over the values of a data type, often used to

express the structural constraints on the values, such as bounds on the size of the values,

and type parameters stating the type of the constituents of the values. For example, a type
scheme Stkin : Int, i : Types) defines a set of data types that have the behavior of stacks,

and that differ in the type of the elements of stacks and the upper bound on the size of

stacks. Types stands for the set of all data types, and is itself not a data type. The data type

Stki-nt-100, for example, is an instance of the above type scheme with n = 100, and

= Int.

A type scheme is in general a partial function from the cartesian product of the

domains of its parameters to the set of all types, Types. For a particular set of parameters,
this finction either returns a data type or is undefined. For example, the type scheme Stk

is a function from lnt x Types to Types, and is defined for every set of parameters.

However, if parameters of a type scheme are required to satisfy certain properties, then the

function returns a data type only if the parameters satisfy the desired properties. For

example, in case of the type scheme Selli: Types], its type parameter must have an equal

operation with standard properties.



I

-215-

The specification language proposed in Chapter 3 can be easily extended to

specify type schemes. A specification should have an additional component, called

Requires, staing conditions on the parameters ranging over types. The Requires

component can specify both the operations that the type parameter must have and their

properties. The semantics of such a specification can be easily given. How the deductive

system proposed in Chapter 4 can be extended to type schema would need further

investigation.

Apart from a type scheme, there are other interesting relations among different

data types. There are standard mathematical relations, such as the relation between a

cartesian product of data types and its components; the relation between discriminated

unions and its components; etc. Some of these relations can be expressed as type schema.

The notion of a subtype of a type needs investigation. For example, what relations exist

between integers, rationals, and algebraic reals? How do sets, multisets, ordered sets, and

sequences relate, and how do stacks and traversable stacks relate?

Our framework is limited in three respects. Firstly, the definition of a data type

only incorporates the input-output behavior of its operations. It does not consider another

aspect of the operations, namely how efficiently these operations can be performed. It is

not even clear whether the computational complexity of the operations should be included

in a &finition of a data type, or whether it is an orthogonal constraint on the

implementations that should be included in a specification. We think that the input-output

behavior of the operations of a data type should be kept separate from their computational

complexity, but a specification should have another component stating the performance

requirements on the implementations of the operations.

Secondly, we have assumed a simple model of nondeterminism in analyzing the

input-output behavior of the operations. For an input on which a nondeterministic

operation can return many possible results, we have not considered how these results are

scheduled. It would be interesting to incorporate the scheduling information and extend

the definitions of observable behavior and distinguishability of values. It would also be

interesting to investigate how our formalism is affected if we relax the assumption that a

nondeterministic operation cannot have the choice of signalling as well as terminating



-216-

normally on a particular input.

Thirdly, the definitional method handles only immutable data types. As is

discussed in Appendix 1, for a wide class of mutable data types, the states of their objects

can be modeled as the values of an immutable data type. However, the framework needs to

be extended to handle arbitrary mutable data types including data types having objects

whose state is also mutable, for example, the data type list in MACLISP. The specification

language and a deductive system based on the extended framework need to be developed.

Berzins's work [31 can be useful in studying this extension.



-217-

References

1. Preliminary ADA Reference Manual and Rationale. SIGPLAN Notices
Vol. 14 No. 6, June, 1979.

2. Berzins, V. Personal Communication. Lab. for Computer Science, MIT,
Dec., 1976.

3. Berzins, V. Abstract Model Specification for Data Abstractions.
LCS-TR-221, Lab. for Computer Science, MIT, MA, 1979.

4. Birkhoff, G., Lipson, J.D. Heterogeneous Algebras. Journal of
Combinatorial Theory Vol. 8, 1970, pp. 115-133.

5. Brand, D., Daringer, J.A., Joyner, W.H. Completeness of Conditional
Reductions. IBM Research Report RC7404, Yorktown Heights, New York,
Dec., 1978.

6. Burstall, R.M. Proving Properties of Programs by Structural Induction.
Computer Journal Vol. 12, Feb., 1969, pp. 41-48.

7. Burstall, R.M., Goguen, J.A. Putting Theories Together To Make

Specifications. Invited Paper at the Fifth International Joint Conf on Artificial
Intelligence Cambridge, MA, Aug., 1977.

8. Cartwright, R, and McCarthy, J. Recursive Programs as Functions in a First
Order Theory. Report No. STAN-CS-79-717, Stanford University,
March, 1979.

9. Cohen, J. Nondeterministic Algorithms. Computing Surveys Vol. 11 No. 2,
June, 1979, pp. 79-94.

10. Cohn, P.M. Universal Algebra. Harper and Row, New York, 1965.

II. Dahl, O.-J., Nygaard, K., Myhrhaug, B. The Simula 67 Common Base
Language. Norwegian Computing Center, Forskningsvein I B, Oslo, 1968.

12. Dijkstra, E.W. Notes on Structured Programming. In Structured
Programming (Dahl, O.-J., Dijkstra, E.W., Hoare, C.A.R.), Academic Press,
London and New York, 1972, pp. 1-81.

/

'/ ill., i .... L .. ...ll l -I I . .. .. . ...= , ..



-218-

13. Dijkstra, E.W. A Discipline of Programming. Prentice Hall, Englewood
Cliffs, NJ, 1976.

14. Dershowitz, N., and Manna, Z. Proving Termination with Multiset
Ordering. Conm.t ACM Vol. 22 No. 8, Aug., 1979, pp. 465-476.

15. Ehrig, H., Kreowski, H., Padawitz, P. Stepwise Specification and
Implementation of Abstract Data Types. Proceedings of the Fifth International
Collq. on Automata, Language, and Programming, Udine, as Lecture Notes in
Computer Science Vol. 62, Springer-Verlag, 1978, pp. 205-226.

16. Enderton, H.B. A Mathematical Introduction to Logic. Academic Press,
New York and London, 1972.

17. Floyd, R.W. Assigning Meanings to Programs. Proceeding of a
Symposium in Applied Math., Vol. 19 as Alathematical Aspects of Computer
Science (ed. Schwartz, J.T.), American Mathematical Society, Providence, R.I.,
1967, pp. 19-32.

18. Friedman, D.P., Wise, D.S. CONS should not Evaluate its Arguments.
Technical Report No. 44, Computer Science Dept., Indiana University,
Nov., 1975.

19. Gannon, J., McMullin, P., Hamlet, R., Ardis, M. Testing Traversable
Stack. SIGPLAN Notices Vol. 15 No. 1, Jn., 1980, pp. 58-65.

20. Goguen, J.A. Abstract Errors for Abstract Data Types. Proceedings of the
IFIP Working Conference on Formal Basis of Programming Concepts Vol. 2,
Aug., 1977, pp. 21.1-21.32.

21. GJoguen, J.A., and Tardo, J.J. An Introduction to OBJ : A Language for
Writing and Testing Formal Algebraic Program Specifications. Proceedings
IEEE Conf. on Specifications of Reliable Software, Cambridge, MA,
April, 1979, pp. 170-189.

22. Goguen, J.A., Thatcher, J.W., Wagner, E.G., Wright, J.B. Abstract Data
Types as Initial Algebras and Correctness of Data Representations.
Proceedings, Conference on Computer Graphics, Pattern Recognition and Data
Structure, May, 1975, pp. 89-93.



-219 -

23. Goguen, J.A., Thatcher, JXW, Wagner, E.G. Initial Algebra Approach to
the Specification, Correctness, and Implementation of Abstract Data Types. In
C'urrent Trends in Programming M~ethodology, Vol. IV, Data Structuring, (ed.
Yeh, R.T.), Prentice Hall, Englewood Cliffs, NJ, 1978.

24. Goodenough, J.B. Exception Handling: Issues and A Proposed Notation.
Comm. ACM Vol. 18 No. 12, Dec., 1975, pp. 683-696.

25. Guttag, J.V. The Specification and Application to Programming of
Abstract Data Types. Ph. D. Thesis, University of Toronto, CSRG-59, 1975.

26. Guttag, J.V. Abstract Data Types and the Developmenit of Data Structures.
Comm. ACM Vol. 20 No. 6, June, 1977, pp. 396-404.

27. Guttag, J.V., Horowitz, E., Musser, D.R. The Design of Data Type
Specification. In C'urrent Trends in Programmning Methodology, Vol. IV, Data
Structuring, (ed. Yeh, R.T.), Prentice Hall, Englewood Cliffs, NJ, 1978.

28. Guttag, J.V., Horning, J.J. The Algebraic Specification of Abstract Data
Types. Acda Infornnatica Vol. 10 No. 1, 1978, pp. 27-52.

29. Outtag, J.V., Horowitz, E., Musser, D.R. Abstract Data Types and
Software Validation. Comm. ACM Vol. 21 No. 12, Dec., 1978, pp. 1048-1064.

30. Guttag, J.V. Personal Communication, May, 1979.

31. Guttag, J.V. Notes on Type Abstraction. IEEE Tran& on Software
Engineering Vol. SE-6 No. 1, Jan., 1980, pp. 13-23.

32. Guttag, J.V., Horning, J.J. Formal Specification as a Design Tool.
Proceedings of the Seventh ACM Symposium on Principles of Programming
Languages, Las Vegas, Nevada, Jan., 1980.

33. Guttag, J.V. Personal C'ommunication, Jan., 1980.

-34. Harel, D., Pratt, V.R. Comments on Program Verification. In Research
Directions in Software Technology (ed. Wegner, P.), M. I.T. Press, Cambridge,
M A, 1979, pp. 387-391.



- 220 -

35. Hewitt, C. Personal Communication. Lab. for Computer Science, MIT,
Dec., 1978.

36. Hoare, C.A.R. Procedures and Parameters: An Axiomatic Approach. In
Symposium on Semantics of Algorithmic Languages, (ed. Engeler, E.) as Lecture
Notes in Mathematics, No. 188, Springer Verlag, 1971, pp. 102-115.

37. Hoare, C.A.R. Proof of Correctness of Data Representations. Acta
Informatica Vol. 1, No. 4, 1972, pp. 271-281.

38. Hoare, C.A.R. Notes on Data Structuring. In Structured Programming,
(Dahl, O.-J., Dijkstra, E.W., Hoare, C.A.R.), Academic Press, London and New
York, 1972, pp. 83-174.

39. Hoare, C.A.R. Recursive Data Structures. Intl. Journal of Computer and
hiforntalion Sciences Vol. 4 No. 2, June, 1975, pp. 105-132.

40. Kapur, D. Proving Correctness of Implementation of a Data Abstraction
Using the Algebraic Method. Unpublished Handout, M.I.T. Course 6.891
Specification Techniques, Nov., 1975.

41. Kapur, D. Specifications of Majster's Traversable Stack and Veloso's h
Traversable Stack. SIGPLAN Notices Vol. 14 No. 5, May, 1979, pp. 46-53.

42. Kapur, D., Srivas, M.K. Expressiveness of the Operation Set of A Data
Abstraction. Proceedings of the Seventh ACM Symposium on Principles of
Programming Languages, Las Vegas, Nevada, Jan., 1980. An expanded version
appeared as Computation Structures Group Memo 179-1, Lab. for Computer
Science, MIT, Jan., 1980.

43. Kapur, D. The Expressive Power of Algebraic Languages for Specifying
Abstract Data Types. Draft Manuscript, Lab. for Computer Science, MIT,
June, 1979.

44. Knuth, D.E., Bendix, P.B. Simple Word Problems in Universal Algebra.
In Computational Problems in Abstract Algebra (ed. Leech, J.), Pergamon Press,
1970, pp. 263-297.

45. Lampson, B.W., Horning, J.J., London, R.L., Mitchell, J.G., Popek, G.L.
Report-on the Programming Language Euclid. SIGPLAN Notices Vol. 12
No. 2, Feb., 1977.



TI

- 221 -

46. Levin, R. Program Structures for Exceptional Condition Handling. Ph.D.
Thesis, Dept. of Computer Science, Carnegie-Mellon University, June, 1977.

47. Liskov, B.H., Zilles, S.N. Specification Techniques for Data Abstractions.
IEEE Trans. on Software Engg. Vol. SE-1 No. 1, 1975, pp. 7-19.

48. Liskov, B.H., Berzins, V. An Appraisal of Program Specifications.
Computation Structures Group Memo 141-1, Lab. for Computer Science, MIT,
Jan., 1977. Also in Research Directions in Software Technology (ed. Wegner,
P.), M.I.T. Press, Cambridge, MA, 1979, pp. 276-301.

49. Liskov, B.H., Snyder, A., Atkinson, R., Schaffert, C. Abstraction
Mcchanisms in CLU. Comm,. ACM Vol. 20 No. 8, Aug., 1977, pp. 564-576.

50. Liskov, B.H., Snyder, A.S. Exception Handling In CLU. IEEE Tran. on
Softivare Engg. Vol. SE-5 No. 6, Nov., 1979, pp. 547-557.

51. Liskov, B.H. Modular Program Construction Using Abstraction.
Computation Structures Group Memo 184, Lab. for Computer Science, MIT,
Sept., 1979.

52. Liskov, B.H. ct al. CLU Reference Manual. MIT-LCS-TR-225, Lab. for
Computer Science, MIT, Oct., 1979.

53. Majster, M.E. Limits ofthe Algebraic Specification of Abstract Data
Types. SIGPLAN Nolices Vol. 12 No. 10, Oct., 1977, pp. 37-42.

54. Manna, Z. Mathematical Theory of Computation. McGraw Hill,
Computer Science Series, 1974.

55. Manna, Z. Six Lectures on the Logic of Computer Programming. Stanford
A.I. Laboratory AIM-318, Nov., 1978.

56. McCarthy, J. Towards a Mathematical Science of Computation.
Proceedings IFIP Congress, 1962, pp. 27-28.

57. McCarthy, J. A Basis for a Mathematical Theory of Computation. In
Computer Programming and Formal Sysiems (eds. Braffort and Hirschberg),
North Holland Publishing Co., Amsterdam-London, 1963, pp. 33-70.



- 222 -

58. Minsky, M. Computation: Finite and Infinite Machines. Prentice Hall,
Englewood Cliffs, NJ, 1967.

59. Morris, J.H., Jr. Types Are Not Sets. Proceedings of the First ACM
Symposium on Principles of Programming Languages, Boston, Oct., 1973,
pp. 120-124.

60. Musser, D.R. Abstract Data Types in the AFFIRM System. IEEE Trans.
on Software Engg. Vol. SE-6 No. 1, Jan., 1980, pp. 24-31.

61. Musser, D.R. Proving Inductive Properties of Abstract Data Types.
Proceedings of the Seventh ACM Symposium on Principles of Programming
Languages, Las Vegas, Nevada, Jan., 1980.

62. Nakajima R., Nakahara, H., Honda, M. Hierarchical Program
Specification and Verification - A Many Sorted Logical Approach. Preprint
RIMS 265, Nov., 1978.

63. Nourani, F. Constructive Extension and Implementation of Abstract Data
Types and Algorithms. Ph.D. Thesis, Dept. of Computer Science, University of
California, Los Angeles, June, 1979.

64. Okrent, H.F. Synthesis of Data Structures from Algebraic Descriptions.
Ph.D. Thesis, Dept. of EE. & C.S., MIT, Feb., 1977.

65. Palme, J. Protected Program Modules in Simula 67. National Defense
Research Institute, Stockholm, Sweden, July, 1973.

66. Parnas, D.L. Information Distribution Aspects of Design Methodology.
Information Processing 71, Vol. 1, North Holland, Amsterdam, 1972,
pp. 339-344.

67. Polajnar, J. An Algebraic View of Protection and Extendibility in Abstract
Data Types. Ph.D. Thesis, Dept. of Computer Science, University of Southern
California, Sept., 78.

68. Srivas, M.K. Preliminary Investigations of a Thesis Topic on Automatic
Synthesis of Abstract Data Types. Unpublished Manuscript, Lab. for
Computer Science, MIT, Dec., 1978.



-223-

69. Standish, T.A. Data Structures - An Axiomatic Approach. Bolt, Boranek,
and Newman, Inc., Technical Report 2639, Aug., 1973.

70. Subrahmanyam, P. On a Finite Axiomatization of the Data Type L.
SIGPLAN Notices Vol. 13 No. 4, April, 1978, pp. 80-84.

71. Thatcher, J.W., Wagner, E.G., Wright, J.W. Data Type Specification:
Parameterization and the Power of Specification Techniques. Proceedings of
the Tenth SIGACT Conference, May, 1978. Also an IBM Report RC7757,
July, 1979.

72. Wegbreit, B., and Spitzen, J.M. Proving Properties of Complex Data
Structures. JACAI Vol. 23 No. 2, April, 1976, pp. 389-396.

73. Wirth, N. Program Development by Stepwise Refinement Comm. ACM
Vol. 14 No. 4. April, 1971, pp. 221-227.

74. Wulf, W., London, R.L., and Shaw, M. Abstraction and Verification in
ALPHARD: Introduction to Language and Methodology. USC Information
Sciences Institute Research Report, 1976.

75. Wulf, W., London, R.L., and Shaw, M. An Introduction to the
Construction and Verification of Alphard Programs. IEEE Trans. on Software
Engg. Vol. SE-2 No. 4, Dec., 1976, pp. 253-265.

76. Zilles, S.N. Algebraic Specification of Data Types. Project MAC Progress
Report, 1974, pp. 52-58. Also Computation Structure Group Memo 119, Lab.
for Computer Science, MIT, 1974.

77. Zilles, S.N. An Introduction to Data Algebra. Draft Working Paper, IBM
San Jose Research Lab., Sept., 1975.



- 224 -

Appendix I - Elaboration of Scope and Assumptions

In this appendix, we elaborate on the scope of the thesis and the assumptions

made about abstract data types and their operations.

1. Immutable and Mutable Data Types

We adopt the commonly accepted informal view of a data type as a collection of

objects with a finite collection of operations to manipulate these objects. The objects by

themselves are not meaningful and the operations are the only way to construct,

manipulate and observe the objects as well as to extract information stored in them.

Data types can be classified based on their object behavior. An object of a data

type may or may not exhibit time varying behavior. An object exhibiting time varying

behavior is called a inutable object, whereas an object whose behavior does not change is

called an imimuiable object [491. We also call an immutable object a value. A data type

having only immutable objects is called an imnulable data type; otherwise, a data type is

called a inutable data type. A mutable data type may also have immutable objects, but at

least one of its objects must be mutable. A mutable object can be factored into two

components: (i) identity, and (ii) slate [471. A mutable data type has at least one operation

constructing new objects. Its operations may change the state of a mutable object without

affecting the object identity. At a given point in a computation, there can exist many

different mutable objects having the same state. For a wide class of mutable data types, the

state component of the mutable objects can be described as an immutable data type.

In this thesis, we have considered only immutable data types with a finite set of

computable operations. We have not considered immutable data types with iterators [491

nor data types involving streams and lazy evaluation [18].

a-hem



- 225 -

2. Exceptional Behavior

During the design and construction of reliable software, there is often a need to

have data types with operations exhibiting exceptional behavior. (See [24, 46, 52, 50] for a

discussion on the need for an exception handling mechanism in a programming language.)

It is only meaningful to apply such operations on a subset of their domains. If an input

falls outside the subset, such operations notify their callers indicating that the input is not
'good,' by signalling exceptions. An exception is assumed to have two components, a

descriptive name and a possible set of arguments which carry information from the point
where the exception is signalled, to its handlers.

We assume that every operation of a data type terminates on every input in its

domain: it either terminates normally by returning a value of its range type or terminates

by signalling an exception. We think it is not a good pnctice to design data types having

operations that do not terminate on some inputs. If a partial finction on the values of a

data type needs to be realized, it can be programmed in terms of the operations of the data

type in a host programming language supporting the data type mechanism.

The assumption of the operations being total simplifies the formalism developed

in the thesis. Our formalism can be extended to partial operations without much difficulty

by introducing a special value 'undefined' for every data type such that if a partial

operation is not defined on an input, then it returns 'undefined' on that input

3. Nondeterminism

There are data types some of whose operations exhibit nondeterministic behavior.

These operations return one of many possible values for a given input. For example, the

Choose operation of the data type finite set of integers, which returns any element of a

given nonempty set, is nondeterministic. Similarly, the Index operation of the data type

finite sequence of elements, which returns a position of a given element in a given sequence,

is also nondeterministic because the sequence can have more than one occurrence of the

same element. All prior work on data types has assumed the operations to be deterministic.

We feel that a formalism for data types must be capable of handling data types with



- 226 -

nondeterministic operations, as nondeterminism is a powerful and elegant abstraction

mechanism for designing programs [13,91. Furthermore, allowing nondeterministic

operations permits the handling of data types with operations implemented in a parallel

environment.

We assume that a nondeterministic operation has only finitely many choices on a

particular input. We rule out data types having operations with infinitely many choices.

Such an operation can be used to write programs having unbounded nondeterminism [13].

There is a controversy about the the realizability of programming constructs having

unbounded nondeterminism and about the limitation of the expressive power of a language

that ruiles out programs with tbounded nondeterminism (35]. Using our formalism, it is

possible to define a data type whose values are 'infinite' (e.g., 'infinite' sets, 'infinite'

sequences, etc.,) insofar as these values can be finitely constructed using the operations;

but, nondetenninistic operations on these values that have infinitely many choices are ruled

out. Our formalism would however extend without much difficulty to the case where the

constraint that a nondeterministic operation has only finitely many choices on an input, is

dropped.
We also assume that if a nondeterministic operation signals an exception on an

input, then the operation behaves deterministically on the input. Thus a nondeterministic

operation is not allowed to have a choice between signalling and terminating normally on

any particular input. This assumption leads to a simpler and modular characterization of

the observable behavior of the data type than would otherwise be possible.



- 227 -

Appendix II - Definitions of Algebraic Concepts and Proofs of

Theorems in Chapter 2

In the first section, we extend the definitions of congruence, homomorphism, and

isomorphism to extended heterogeneous algebras having nondeterministic finctions. In

the second section, we present the proof of Theorem 2.2. In the third section, we explain

how the Definition 2.12 of behavioral equivalence on type algebras captures the desired

property that a computation (i.e., an interpretation of a ground term) results in equivalent

values in two behaviorally equivalent type algebras.

1. Congruence, Homomorphism, and Isomorphism

Def. A2.1 A congruence R on a conventional heterogeneous algebra

A= I VD, ID'EA' 1; { f I a E},
in which each f is a total deterministic function, is a family of equivalence relations

{ RD, I D' E A' I such that

for everyoEft, a Di X...XDn -+

for all v E VD ... vE VD

v,1 R v R =:, f,(v, ... v) R , f(v' ..... v'). ()
I Dn n Vv .. In

We also say that R has the substitution property.

in an extended heterogeneous algebra having nondeterministic functions, when

is a nondeterministic total function, then (*) is modified to

V R lvi* , VRDn' = 1n (vYEf (v,...., v 3zE1 fv I .... vn) [yRD'Z
A VzE i ff(v, ... v')} 3yE I f(v,... , v) I [yR,) z).

If Ri) is the identity relation (equality), then the above reduces to
Vi ' fo V n . )} = vi { ( ' . .. ) 1.

Congruences on an extended heterogeneous algebra A can also be partially

ordered in the same way as in case of a conventional heterogeneous algebra:

Given two congruences El and E2, E is larger than El, expressed as El < E , if and only if

for each D' E A', E C F_,.



-228-

Congruences form a lattice with respect to <, and have the least element (the identity

congruence) and the greatest element (the universal congruence).

Def. A2.2 Let Al and A2 be

A1 = [1 V ID' CA'}'{ r1 I E O}
A2 = D2 D' E A' }'r21 EC 0 ]

A family of total (deterministic) functions 4, = { -)0. Vt.-. V , I D' C A' } is called a

homonorphism from A1 to A2 if

for eacha: Di x...xD n -.D'

for each t, of type D, (i.e., v, E V)l )..., v of type D ,

(i) if f' is deterministic, then f2 is also deterministic anda a
' '(v .  v)) o, fv ( I1l) (Vl) .... . b,) (v))' and

an a I n
(ii) if fo1 is nondeterministic, then f2 is either nondeterministic or deterministic, and

f(v,.... V) f( 1) (V).... *I) (v))}. I

(Case (ii) above covers case (i) also.) We call 4, an onto homomorphism from A, to A2 if

every function in o, is onto; in that case, A2 is called a homomorphic image of Al If every

function in o, is a bijection, then 4D is an isomorphism from A, to A2, and A, and A2 are

isomorphic. Note that, if Al and A2 are isomorphic nondeterministic algebras, then they

have the same amount of nondeterminism, which is not necessarily the case if A2 is a

homomorphic image of Al.

It can be shown that the results from conventional heterogeneous algebras in [4]

extend to the extended heterogeneous algebras. In particular, we can show that

Prop. A2.1 If R is a congruence on an extended heterogeneous algebra A, then there exists

an onto homomorphism from A to A/R. I

Prop. A2.2 If,4, is an onto homomorphism from A, to A2 then the kernel R of 4, on A,

where R { RD. I D' E A') and RD. = { (v, V> I OD,(v) = 4),() ), is a congruence on A1.
U



- 229 -

The following diagram in which 4b is an onto homomorphism from A, to A2, R is

the kernel of 4) on AV H is the homomorphism induced by R from A, to A,/R, and 4' is an

isoriorphisni from A/R to A2 , commutes, i.e., 4) = 4'. H.

4)

A IR

2. Proof of Theorem 2.2

Thni. 2.2 Assuming that EBOOL is the largest congruence on a model of [tool, E is the

largest congruence on A.

Proor By induction on type algebras.

Basis: A = 0, the null set.

(i) Bool - the statement holds because of the assumption.

(ii) D other than Bool - since every value in VD is observably equivalent to every other

value, the statement is true,

Inductive Step: A 4- 0,

Assume that the statement holds for each D' E A.

To prove the statement for D, we must show that E1) is the largest equivalence relation

such that E is a congruence on A. We prove this by contradiction.

Suppose ED is not the largest equivalence relation and E') is a larger equivalence

relation containing E1) such that E' = I ED, I D' E A ) U { E'1) I is a congruence on A.

There exists <v, v'> E E') such that <v, v'> C1 ED. So, there is a c(x) of type D' E A such that

there is an interpretation of c[x/vj in A distinguishable from every interpretation of c[xlv']

in A or vice versa. But, this is contradictory to E' being a congruence which requires that

for every interpretation r, of c[x/ v] in A, there is an interpretation v; of c[./V] in A such

that <v1 vi> E E, , and vice versa. So, ED is the largest equivalence relation. I



- 230 -

Modificalion for type algebras having an exception domain

The proof has the same structure as above, except that we also have to consider

the case when <v, v> t ED implies that v and V are distinguishable because a computation

c(x) (i) signals on v and returns a normal value on V, or vice versa, or (ii) signals

distinguishable exceptional values on v and V. In the basis step, for the case of D other

than Bool, ED need not be the universal relation on VD'

3. Elaboration of the Definition of Behavioral Equivalence and

Proofs of Theorems 2.5 and 2.6

In Section 2.2, we defined two type algebras to be behaviorally equivalent if their

reduced algebras are isomorphically equivalent. We further elaborate on this definition.

We prove Theorems 2.5 and 2.6 of Section 2.2. The discussion and theorems of this section

extend to modified type algebras having the exception domain. The set of mappings from

a modified type algebra A to another modified type algebra A' includes a mapping from

the exception do:iain of A to the exception domain of A' which gets defined by the

mappings on the normal domains. 4!
As is discussed in Subsection 2.2.5, the behavioral equivalence of type algebras A,

and A2 can be expressed as

A -l ........ > ----- A2
I I
I I
I I

I I
I I
A E .... .... A2/E2

such that the above diagram commutes, i.e.,

401. tl = H 2 ,  (t)
where A1/E, and A2/E2 are the reduced algebras corresponding to Al and A2 respectively



-231-

and 4, is the isomorphism defined by the isomorphic equivalence of A,/E and A /E2 . The

equation (t) above defines the set *, of many to many mappings, where

S= { " V J), V 2l D'c A u { D}}.
We first discuss how for two isomorphically equivalent algebras A, and A2, the

bijection ol) in an isomorphism 4D can be constructed, and show that the interpretations of a

ground term e in A, and A2 are 'equivalent.' Later, we discuss these properties for

behaviorally equivalent algebras.

3.1 Isomorphically Equivalent Type Algebras

For the case when the deterministic constructors of a data type D can generate all

the values of D, we have

Thrn. A2.l If Al and A2 are isomorphically equivalent, then 1 01), I D'E A I uniquely

determines the bijection OD.

Proof By definition of isomorphic equivalence, there exists a bijection 01)" VI -, V

such that 4) = { 0)i I D' I A' } is an isomorphism. We prove the statement by

contradiction. Let Lis assume that ,), is not unique; instead, there are two bijections 0,

and 4,,2 such that 01 = { o I D' C A } U ( ,I~ } and U= { 4) I D' I A } U { , } are

isomorphisms.

Since 4) and 4i 2 are different, there exists v E V1), 4)(v) : .02(V). We pick a v

that can be constructed by the minimum number (say k) of applications of the

deterministic constructors and on which 4,1 and V 2 differ. We have v = f 1(v, ..... v) for

some a, and if D = D, v can be constructed by k' < k number of applications of
constructors; thus, 41

1(v) = )

By the definition of isomorphic equivalence,
0 ) f2(41), oI V.) , ,)(v )), and
4),1(v) r(4)(v) ..... 1 (v)...) (v)), ad

II4(V) =2 r(01) (VI).., 0,~v) 2 Vi , (V))A

meaning that 4,1 (v) = 4,1'v), which is a contradiction.

So, there are not any v such that 4) (v) ;, 02 (v).

Hence the proof of the theorem. I



-232-

We can construct the bijection -01) as follows:

For every constructor : D x ... x D - D
v) /; ... A 4o) (vn) = Vn) =*- 4o,) ( f '(V 1 Q.,n) - f(V , ... ' )

The case of a's not taking any argument of type D serves as the basis step in the

construction of D.

The above theorem holds in case A, and A2 are reduced even if some of the
values of D cannot be constructed without using a nondeterministic constructor. However,

it does not hold in general; for example, consider a variation of the type algebra A', for

Set-lnt denoted by A 5. , having everything else the same as in AI except that In' , the

interpretation of the operation Insert, is a nondeterministic function, which appends the

integer being inserted to the beginning of the sequence representing the given set or at the

end of the sequence.
In,(<i... , -.. i ...>. 1 > 31<jm,i=i,

( <il .... i> or i, il .... i> otherwise.

A5 is clearly isomorphically equivalent to itself and there is more than one isomorphismsi
from A' to itself.

si

Thin. A2.2 Given two isomorphically equivalent type algebras A, and A2 defining an

isomorphism 4b, a value v of type D in A1 has the same observable behavior in A, as bD(v )

in A2 in the sense that for every term c(.%) of type D" E (D)* with one free variable of type
D,

D-( { x/lA }= I AlX/4II )(V0 IA 2

Proof By induction on the depth of x in c(x).

depth(x) = 0.

depth(a(e, ..., e.)) = max(depth(e), ..., depth(e)) + 1,

where e has x as a variable.
I

Basis depth(c(x)) = 0.

So, c(x) is x, and the statement of the theorem trivially holds.
Inductive Step Assume the statement of the theorem for the case when

depth(c(x)) ( k > 0, to show for the case when depth(c(x)) = k. Let



- 233 -

c(x) a (e ..... ,)

where e, is of type D.. We assume that the statement holds for each e,, so

4)1 eix/vJI A, I ) = I ejx/0 1)(v)IIA 2 1

1)"( 1 cix/vi A1 I) = 'b1),,( 1 f 1 (41 [x/ vi A1 , ... I** 4e x/vI A1 ) 1I

-I rl(4i 1 [xv ... (I e(IexvIA)I (since 4 is an isomorphism)
I U~~J ,1,- 0)n( ,Ill l)1

- {~x/@OD(v)JI A 2 1,.{ e n x0I)(v)I A 2 1) 1

- a(e1, .... e n)Ix/o (1)]1 A 2 1 = I c14x/%(MJ A 2 b

For the case of modified type algebras, we are interested in terms that such that cix/vil Al
and c[x/l)()J are not undefined.

3.2 Behaviorally Equivalent Type Algebras

Thin. A2.3 If A1 and A are behaviorally equivalent,
then <v, VI> E 'II < ([vi, [i/I > EO .

Proof Obvious fruni the diagram. Since 4, - 11 H-a '1', from <v, V1> E we get

4)fv = [v'J. I

We now present the proofs of Theorems 2.5 and 2.6 of Subsection 2.2.5.

Thin. 2.5 For behaviorally equivalent A, and A 2, for every groulnd term' e of type -

D" E(D)forevery yE 14 eA1 lthereisa yE I ejA }such that<[vj,[ Vj>EO0 1 .,and
2

vice versa.

Proof By induction on the structulre of type algebras.

I.Basis A = 0

(i) D is Bool: Since all behaviorally equivalent algebras are isomorphic and the
observable equivalence relation is the identity relation, the above is true.

(ii) D is other than Boot: Since the observable equivalence relation is the uiniversal

relation, the above is true.

L. Inductive Step A ;6 0

Assume that the above statement holds for all ground terms of type D" E (D)+ not



-234-

having any operation symbol in a. (1)

To show for a ground term eby induction on number of operation symbol from a in e.

2. The basis step holds because of the assumption.

2. Inductive Step Assume for e having k' < k occurrences of operation symbols from 0,

to show for e having k occurrences. (2)

This is also proved by induction on the depth of the outermost operation symbol

from 02 in e.

depth(a(e, ..., e)) = 0 if a E a, and

depth(o(e ..., en)) = min(depth(el), ..., depth(e)) + I if £ 0.

3. Basis depth(e) = 0. i.e., e = a(e, ..., es), and a C a.

So, an e, can have at most k-i occurrences of operations from a.

We prove the statement of the theorem in one direction; the proof in the other

direction is the same except that v is to be replaced for V.

If v E { el 1, i.e., if[v] E { e A /E1 1, there is a choice ofg, the interpretation of.

in Ai/E, , such that

[vJ = g.(v, .... [v]J), where [E { e, I A/E l for each 1 < i < n.

By inductive hypothesis (2), for every Iv) E { eil A2/E2 }, there is a [v] E I A/Esuch

that 4,. ([vj) = [v)J. Because 4, is an isomorphism, there is a choice of such that

0D,,([vI) = [v'] = g ([vJ] .... [v']) meaning that v' E { e I A2 }

3. hiductive Step Assume for e having depth(e) < m > 0, to show for e having

depth(e) = m. (3)

e= o(e .... e) oa£.

The proof goes the same way as for the basis step except that we use the models

of the data type D' that has the operation a. I

For modified type algebras, we are interested in ground terms whose interpretations are not

undefined. It can be.shown for behaviorally equivalent type algebras A, and A2 that if for

some ground term e, d1 Al is undefined, then el A2 is also undefined and vice versa. I

Thin. .6 For behaviorally equivalent A and A2, for any ground terms e, and e2 of type



-235-

D", leI A] = Il[e 2 I A, 1) {leiAI2 11 = I{ le21 A21}.

Proor From the above two theorems and the fact that A1/E and A2/E 2 are isomorphically
equivalent, the statement is immediate. I



-236-

Appendix IIl - Proofs of Theorems in Chapter 4

This appendix contains proofs or various theorems in Chapter 4.

1. Specifications without Nondeterminism and without
Exceptional Behavior

Thin. 4.1 Every constructor ground term e of type Sc(-lnt' is equivalent by equational

reasoning to a ground term e' not having any occurrence of Remove, i.e., the equation
4e' e' E EQ(Selnt').

Proof For every constructor groumnd term e of type Set-int', there is a constructor ground

term e such that

'e =c e" E EQ(Set I nt') A #re(e) = 0,

where #re(e) gives the number of occurrences of the operation symbol Remove in e.

Similarly, the finrtion # in gives the number of occurrence of the operation symbol Insert

in a term. We show (*) by induction on #re(e).

Basis # re(e) = 0,
The above statement trivially holds, becauise e is same as e.

Inductive Step Assume the statement holds for e such that # re(e) < k,

show for #re(e) = k.

Consider the outermost subterm e, in e such that e, Remove(e 1, ii). Clearly,

#re(e11) < k, so there is a subterm e;, such that 'e,, e1, ' EQ(Set-Int') and

#re(e 1l) = 0. Thus we have 'e, a Remove(e 1 , ii)' E EQ(Sel-Int'). We show that()

holds for Remove(e,,, ii) by induction on #in(e 1 ).

Basis #in(e;1) 0.
.e, Removc(NulI, il)

e is obtained by suibstituting Null for elin e.



- 237 -

InductiveSlep Assume the above holds for #in(el ) < m,

to show for e, having m Insert's.

e, =. insert(e 2, i2), so

el = Remove(Insert(e 21, i2), il)' E EQ(Set-int').

There are two cases.

Casel i l = i2
lei = Remove(e 21, il)' E EQ(Set-Int'). Axiom 2.

By the inductive step, there is an e;, such that

'Remove(e,, il) -e,, E EQ(Sct-Int') and #re(e; 1 ) = 0.
So, 'e, e- ' E EQ(Set-lnt').

We get e' by replacing e, by e;,.

Case 2 - il = i2
.el = Insert(Remove(e21, il), i2)' E EQ(Set-lnt'). Axiom 2.

By the inductive step, there is a e1 such that

'Remove(e 21, il) - e;1 c EQ(Set-Int'), and thu-, e = lnsert(e; , i2)' E EQ(Set-Int').

We get e' by replacing el by Insert(e; , i2). I

Thm. 4.4 If a specification S is sufficiently complete, then S is behaviorally complete.

Proof IfS is inconsistent, then since F(S) = 0, so S is trivially behaviorally complete.

IfS is consistent, we show that a sufficiently complete S is also behaviorally complete by

contradiction.

Suppose S is not behaviorally complete, so there exists two reduced algebras A, and A2 in

F(S) that are not isomorphically equivalent w.r.t I P0  E Q 1. Without any loss of

generality, we can assume that A, and A2 share the same domain corresponding to a
defining type, so for each D' E A, 40D. is the identity function. Since every constructor is

deterministic, there is a unique mapping 01): V V 2 which can possibly satisfy the

following for every o in U.

for each set of values v1 ..... v, such that P,[xl/v| .... x/vIl A1 = T,

(*) 1  ... v)) = fV..,V (.1)... .. D (v,))'IJ



- 238 -

If A and A are not isomorphically equivalent w.r.t. { P0 I a E 0 1, this means that there
1 2 C

must exist an observer a and a set of values v, .. .. vn such that Pjxl/vl,... x/Vl Al

holds and () is not satisfied.

Using the minimality property, we can construct a legal ground term o(e9.., e) of

type D' E A, where D' is the range of a, and for each I <i < n, e is the ground term whose

interpretation is v in A1. Since S is sufficiently complete, there exists a ground term e' of

type D' not having any operation symbol of D and auxiliary function used in S such that
o(e1, .. , e) - e' E EQ(S). This means that

S...... e)l A = (e ... e)l A e'l Al

because A and A2 are reduced algebras. This is in contradiction to (*) not being satisfied.

Hence the result. I

Thin. 4.6 For a consistent and sufficiently complete S. if any two legal ground terms el and

e2 of type D are distinguishable by S, then 'e, i e2' E DS(S).

Proof: e, and e2 are distinguishable by S, means that for any A E F(S), ell A and e21 A are

distinguishable, i.e., there exists a term c(x) of type D' E A with one free variable x of type

D such that c[x/v] I A is distinguishable from c[x/v 2] I A in A.

Using the above fact, we prove the theorem by induction on specifications.

Basis Specifications with no defining types.

Case I Bool

'T A F E DS(Bool). Every ground term of type Bool is equivalent to either T or F, so

the theorem holds.

Case 2 D other than Bool

All ground terms are observable equivalent, so the theorem holds.

Inductive Step Assume the above statement for the specification S' of a data type D' used in

the specification S of D. To show for S.

We can prove by contradiction that 'e, A e2' E DS(S) as follows:

Assume e, a e2

then cfx/e a e[xle,



-239-

since S is sufficiently complete, there exists groulnd terms eiand e; of type D' such that

e., e; do not have any occurrence of an operation symbol of D, and 'e, = e 'CEQ(S) and
.eM ;EEQ(S, e'so we haveel - e;' E EQ(S. Since e,,. are distinguishable by S', by

inductive hypothesis, 'e; 6 e' E IDS(S'), so 'e; e' is also in DS(S). This is a

contradiction, as S is consistent. So, 'e, 4 e2' E DS(S). I

2. Specifications with Exceptional Behavior and without

Nondeterminism

1'lim. 4.9 Every legal constructor ground term e of type SMkdnt such that

'N?S(kIlt(e) =r E E-Q(Stk-int), is equivalent by equational reasoning to another legal

constructor ground term e' having only Null and Push, i.e., if 'N?Stk-Iflt(e) = T' E

EQ(Sik-Int), then 'e =-e' ' E EQ(Stk-int).

Proof Proof is similar to that of Theorem 4.1 above.

Let # po and #rep be the functions on terms compuiting number of occurrences of Pop

and Replace respectively. We show by induction on #po(e) + #rcp(e) that

()if 'N?Stk.Ift(e) T' E EQ(Sik-1nt), then there exists an e' such that 'e =-e' E

EQ(Stk-Int) and #po(e') + #rep(e') = 0.

Basis #po(e) + #rep(e) =0,

e serves as el.

Inductive Step Assume ()above for the case # po(e) + # rep(e) < k,

to show for # po(e) + # rep(e) =k.

Consider the outermost subterm e, in e having Pop or Replace as the outermost

operation. It is obvious that if 'N?S(k-In1(e) T' E EQ(Stk-Int), then 'N?Stk.Int(e1) I"

E EQ(Stk-1nt).

Case I e, = Pok~e,,)

Since 'N?kI(el) =' E C Q(Stk-Int), by inductive step, there exists an e' such

that'elea E;1 1 - E EQ(S~k-1n1) and #po(e',) + #rep(e,, ) = 0.

Since 'N?Stkk1lt(el) =- T' EQ(Stk-int), ej, is not Null, and so ei1 = Push(ew1 i).

lhus'e1 Pop(Push(e21, i))- e,,'( C Q(S(k-1nt) Axiom 1.



- 240 -

By replacing e, by e21 in e, we get the required e'.

Case 2 el = Replace(ell, il)

Since 'N?Stk.Ilnt(eI) = T' C EQ(Stk-Int), by inductive step, there exists an eil such

that'e, - E EQ(Stk-Int) and #po(e, 1 ) + #rep(el) = 0.

Since 'N?Stk.Ilnt(el) = T' E EQ(S(k-Int), e' is not Null, and so el = Push(e2, i2).

Thus e, = Replace(Push(e 2 , i2), il)

Pusl(Pop(Push(e2, i2)), il) Axiom 3

Push(e21, il) Axiom I

So 'e Push(e2l, il)' E EQ(Stk-lnt).

By replacing el in e by Push(e2l, il), we get the required e'. I

Thin. 4.12 If a specification S is sufficiently complete, then S is behaviorally complete.

Proor IfS is inconsistent, then since F(S) = 0, so S is trivially behaviorally complete.

If S is consistent, we show that.a sufficiently coimplete S is behaviorally complete by

contradiction.

Suppose S is not behaviorally complete, so there exists two reduced algebras A1

and A2 in F(S) such that for every D' E A, the domain corresponding to D' in A1 and A2 are

defined by isomorphically equivalent algebras in F(S'), where S' is a specification of D',

and A2 is not partially isomorphically embeddable w.r.t. S in Al. Without any loss of

generality, we can assume that A and A2 share the same domain corresponding to a

defining type, so for every D' E A, 0,. is the identity function. Since every constructor is

deteiministic, there are unique one to one partial functions lb: VI. V- 2 and

*EXV" :EXV-, EXV which can possibly satisfy the requirements for A2 to be partially

isomorphically embeddable in Al (see Def. 3.13 of isomorphic cmbeddability in

Section 3.5). The first two requirements there can be easily satisfied. The third

requirement is complex and is restated below:

For every operation a C 01, for every set of values Y, ..... v , such that 1 ).(v,) is defined

for each I < i < n, and PU[xi/vl ..... X/v l A T,

(a) if (1 signals an exception value ex(v, ..... v) specified to be optional by S on the



-241-

input v,, .... v, then the associated condition O(x,.., x.) holds for v ... v, and

( . .. o) (v)) either signals ex(eDov), o,(Vm)) or returns for
1 n m;

some V, or

(b) if *i(vl), ..... ,),(v') are defined and f signals an exception value

e. ,;0,(v;). ,(v)) specified to be optional by S on the input .. (V),.. 4) (v),
Im n

then the associated condition O(x,.., xn) holds for %0 (vd) ... (v), and
,(), I, .... v) either signals ex(v', .... v') or returns v; otherwise,

a )

For A, not to he partially isomorphically embeddable in A, at least one of the

above conditiovs is not satisfied. Supposingly if the condition (a) is not satisfied, we have

In M

meaning that A2 does not satisfy the optional exception condition for o in S, which is

contradictory to the assumption that A2 E F(S). So, the condition (a) could not have been

violated. Similarly, it can be shown that the condition (b) could not have been violated.

The violation of condition (c) is then the only possibility. In that case, for solle

(i) exactly one of the two sides of the equation (*) siinals an exception,

(ii) different sides signal different exceptions, or

(iii) different sides return different values.

Using minimality property, we can construct a legal ground term e = o(ei,.., e) of type D',

where for each I <i < n, e, is the ground term whose interpretation is v, in A,. The

possibilities (i) and (ii) above are ruled out because of the following reasons:

For both (i) and (ii), the exception signalled by either side must be different from the

optional exception. Since S is sufficiently complete, either 'N?),(e) - T' C EQ(S), or

'N?,),(e) = F C EQ(S). If 'N?c),(e) - T' E EQ(S), then none of cdA and IA2 can be an

exception value, ruling out (i) and (ii). If 'N?D,(e) - F C EQ(S), then e signals ext' C

EQ(S) for some ext meaning that

Al = 42 = MA1
again ruling out (i) and (ii).

The only possibility is (iii). Then e must be type D' C A, as if e is of type D, then



-242-

the definition of% ensures that the equation (*) is satisfied. We have either'Ni),(e) a T'

E EQ(S) or neither 'N?,V,(e) - T' E EQ(S) nor 'N?D,(e) - F' E Q(S). If 'N?),(e) - T' E

EQ(S), then there is a ground term e' without any operation symbol of D and auxiliary
finctions used in S such that' e -e'' EQ(S); so elA = elA elA ruling Out (iii). If

12 1
neither 'N?D,(e) - T E EQ(S) nor 'N?,),(e) - F' EQ(S), then also there exists a ground

term e' without any operation symbol of D and auxiliary functions used in S such that
' e = e' E EQ(S u I N?, e) = T }), which again rules out (iii) because of the reasons

similar to the ones discussed above.

The above thus implies that A2 is partially isomorphically embeddable in A1.

Hence the result. I

Thin. 4.13 For a consistent and sufficiently complete S, if any two legal ground terms el
and e2 of type D are distinguishable by S, then 'el 3 e2' C DS(S).

Proor: e, and e2 are distinguishable by S, means that for any A E F(S), ell A and e21 A are

distinguishable, i.e.,

(a) el A is an exception value and e2I A' is a normal value,

(b) ell A and e21 A' are distinguishable exception values, or

(c) eil A and e21 A' are normal values and there exists a term c(x) of type D' E A U { D }
with one free variable x of type D such that c[x/v'] I A is distinguishable from c[x/v 2] I A in

A.

Since S is sufficiently complete, it can be shown that if

(i) a ground term e interprets to an exception value in every algebra A E F(S), then

N?D4e)- F E EQ(S), and also

(ii) if e interprets to a normal value in every algebra A E F(S), then 'N?,),(e) T' E

EQ(S).



- 243 -

Using the above facts, we prove the theorem by induction on specifications.

Basis Specifications with no defining types.

Case I Bool

"r 36 F" E DS(Bool). Every ground term of type Bool is equivalent to either T or F, so

the theorem holds.

Case 2 D other than Bool

Subcase I S does not specify any operation to signal,

All ground terms are observable equivalent, so the theorem holds.

Subcase 2 S specifies operations to signal

Assume e, and e2 are distinguishable by S, so there is one of the above three

possibilities. We show in each case how 'e, 3 e2' can be derived in I(S).

(a) Since S is sufficiently complete, 'N?,(el) _= F' E EQ(S) and 'N?,),(e 2) = T' E

EQ(S), and by the axiom (vii) in Subsection 4.3.3, 'e, 3 e2' E DS(S).

(b) by sufficient completeness of S, using the axiom (vi) in Subsection 43.3 and

repeatedly using the argument in case 2, we get 'e, 3 e2' E DS(S).

(c) By the substitution property of the operations, and the sufficient

completeness of S, we get 'e, a e2' E DS(S), by the method of proof by contradiction.

hiduciive Siep Assume the above statement for the specification S' of a data type D' used

in the specification S of D. To show for S.

Assume e, and e2 are distinguishable by S. For the possibilities (a) and (b), the argument

used in the basis step applies. For the third possibility, in addition to the case considered in

the basis step, we have the case when the interpretations of e, and e2 are distinguishable in

A because of a computation c(x) returning distinguishable results of type D' E A. For this

case also, we can prove by contradiction that 'e it e2' E DS(S) as follows:

Assume e, - e2

then cjx/e] a clx/el, ()
We have three subcases:

Subcase I Both sides of(*) interpret to a normal value in A.

Since S is sufficiently complete, there exists ground terns e and e; of type D'

such that ei, e; do not have any occurrence of an operation symbol of D, and e, = ei,



-244-

Se2  e'E EQ(S), so we have e' - e; E EQ(S). Since e,, e2 are distinguishable by S', by

inductive hypothesis, 'e; a e;' E DS(S'), so ei i e;' is also in DS(S). This is a

contradiction, as S is consistent. So, 'e1 i e2 E DS(S).

Subcase 2 One of the two sides of(*) interprets to a normal value.

Without any loss of generality, assume L.h.s. interprets to a normal value. By

sufficient completeness of S, there is a e; such that 'e, = e" E EQ(S), and there is an

exception ground term ext such that 'e2 signals ext" E EQ(S), so again, we have using the

axioms, 'e 36 e2' E DS(S).

Subcase 3 Both sides of(*) interpret to distinguishable exception values.

Using the sufficient completeness of S, we can show using a similar argument that

e, 3 e2' E DS(S).

Hence the theorem. 1

3. Specifications with Exceptional Behavior and

Nondeterminism

Thi. 4.14 fand TR(f) are semantically equivalent.

Proof By induction on structure off We only need to show the basis step; the inductive

step is straightforward because the symbols -, V, and v have the same interpretation. So,

we havefas 'e, a e2.' Consider an extended type algebra A of D in which fand TR(f) can

be interpreted (i.e., A has an interpretation for every nondeterministic operation symbol a

and the corresponding auxiliary function symbol v.p such that the interpretation of the

auxiliary function is the relation computed by the interpretation of the nondeterministic

operation symbol).

Case (a). fdoes not have any occurrence of a nondeterministic operation symbol.

TR(f) = f, so the statement trivially holds.

Case (b). Both e, and e2 have occurrences of nondeterministic symbols:

It is obvious from the description of the procedure TR in Subsection 4.4.1 that the

interpretation of'e, - e2' is equivalent to the interpretation of TR(f).

Case (c) Exactly one of e, and e2 has occurrences of nondeterministic symbols: Again from



-245-

the description of TR in Subsection 4.4.1, the interpretation of 'e, a e2' is equivalent to the

interpretation of TR(f). I



~1A

Appendix IV - Specifications of Data Types used in Chapter 5

In this appendix, we give specifications of the data types Null,

Struct in,: D,.. .' n k: D kI. Oncorin ,: Dl,..., n,,: D ki , and. Sequcncc-Ilnt used in ChapterS5.

Struct, Twnd Oncor are type schema. Below, we specify an instance of these schema

assuming fixed but unspecified parameters, i.e., k as well as D,,..., arc fixed. Since the

spec ification is given for an arbitrary k, we have used the .. 'notation. The specification of

any particular instance, such as Onwof jeniply: Null, pair: Pair],

Struct [car: hIt, cdr: List-hitj used in Chapter 5, can be given without using the
notation.

Figure A4.1. Specification or Null

Operations

Nil -. Null
Equal Null X Null -. Bool as x1 x2

Axioms

Nil x Nil z T



-247-

Figure A4.2. Specification of Struct Ii: D1 ...., fk: DkI

Operations

Create D, x ... xDk-.D
Fetchjl1 : D Di

Fetch-nk: D -. Dk

Replace_/),1 : D xD --+ D

Replace..f: D x D --+D
Equal D xD -. Bool as xl: x2

Axioms

Fetch...fl(Create(xl, ... , xk)) x I

Fetch-nfk(Create(xl, ... , xk)) -= A

Replace-li1 (Create(xl, ... , Ak), yl) Create(yl, ... , xk)

Create(xl,...xk) =Create(yl,..., yk) N1l yl) A... A(xk yk)



-248-

Figure A4.3. Speiricafion Of Oneof In,: D,..., n: Dj

Oneof [n,: DI,. ,: Dkl as D

Operations

Makenj D1  D

Make-nk Dk -~D

Value-n1  D Di
-4wrong-tag

Value..nk D -~Dk

-4wrong-tag

ls-j1  D -~ Boot

Equal :D XD- BooI aS x1 x2

Restrictions

ISln1 (x) =0 Value ,z1(x) signals wrong-tag

ls-lk(x) =* value-k(x) signals wrong-tag

Axioms

Valuej(Mak9_,1(lf X1

Value flk(Make flk(xk)) mxk

lsflI(Makenk(xk)) a

IJ~k (Make fl1(x If a F



-249-

Make..n1(xl) = Make...fl(Yl) X1 yl

Make.nfl(x1) Make..fk(yk) F

Make-nk(xk) Make-n.l1(yl) F

Make-lik(xk) =Make-nk (yk) Ak yk

x y y x



- 250 -

Figure A4.4. Specification or Sequence-lot

Sequence-tnt as SI

Operations

Addi :SlX Int-.SI
Addh SI XInt -.5
Concat SI X SI -. SI as x1 -x2
Subseq 51lXlInt Xlnt-.Sl

-~bounds

negative-size
Fill mnt X mnt -Si

-. negative-size
Fetch SI XInt -. t as x~iJ

-bounds

Bottom S In t
-bounds

Top :SI-.nt
-bounds

RemI :SI.Sl
-bounds

Remh :Sl-.SI
-bounds

Size SI -. t
Empty SI -. Bool
Replace SI X mnt X mnt -. SI

-bounds

Index S X int -. nt
-element-not-In

Member SI X Int -Bool

Equal SI X SI Bool as x1 x2

Restrictions

0( I Vii > (Size(s) + 1)) =:, Subseq(s, ii, i2) signals bounds
(-~ (11 < I V i1 ) (Size(s) + 1)) A 0i2 <0)) =* Subseq(s, ii, i2) signals negative-size
I < 0 :- HalI, j) signals negative-size
(i < 1 V I > Size(s) ) =* Fetc h(s, i) signals bounds
Size(s) =0 :Bottom(s) signals bounds
Size(s) =0 Top(s) signals bounds
Size(s) =0 Reml(s) signals bounds
Size(s) =0 Remh(s) signals bounds
(i < 1 V I > Size(s) )* Replace(s, i, j) signals bounds

Member(s, J) =* lndex(s, j) signals element-not-in

Axioms

Addl(New, 1) =_Addh(Now, j)
Addl(Addh(s, 11), 12) Addh(Addl(s, j2), 11)



-251-

s- New =s
si1 Addh(s2, j) Addh(sl 1 s2, j)
Subseq(s, ii, 0) New
Subseq(Addh(s, j), ii, i2 + 1) =if 01i + i2) < (Size(s) + 1) then Subseq(s, i1, i2 + 1)

else if (ii 1 i2) =(Size(s) + 1) then Addh(Su bseq(s, ii1, i2), j)
else Subseq(Addh(s, j), ii, Size(s) -il +2)

FilI(O, j) =New
HIMl~ + 1 , j) =-Addh(Fill(i, j), j)
Fetch(Addh(s, j), 0) =-f i= Size(s) + 1 then j else Fetch(s, 0)
Bottomn(s) =-Fetch(s, 1)
Top(s) =-Fetch(s, Size(s))
Remi(s) Subseq(s, 2, Size(s)-i)
Remh(s) Subseq(s, 1, Size(s)-i)
Size(New) a0
Size(Addh(s, j)) -=Size(s) + 1
Empty(New) -=T
Emply(Addh(s, j)) =-F
Member(New, j) =-F
Member(Addh(s, j1), j2) =-if j1 j2 then T else Member(s, j2)
Replace(Addh(s, j1), i, j2) -=if i Size(s) + 1 then Addh(s, j2) else Addh(Replace(s, i, j2), jI)
Fetch(s, lndlex(s, j)) =-
x x MT
X V y zX
New =Addh(s, J) =F
Addh(sl, j1) Addh(s2, j2)El Q1 j2) A(sl s2)



OFFICIAL DISTRIBUION LIST

Defense Technical Information Center
Cameron Station
Alexandria, VA 22314 12 copies

Office of Naval Research Office of Naval Research
Information Systems Program Code 455
Code 437 Arlington, VA 22217
Arlington, VA 22217 1 copy

2 copies
Dr. A. L. Slafkosky

Office of Naval Research Scientific Advisor
Branch Office/Boston Commandant of the Marine Corps
Building 114, Section D (Code RD-I)
666 Summer Street Washington, D. C. 20380
Boston, MA 02210 1 copy

1 copy
Office of Naval Research

Office of Naval Research Code 458

Branch Office/Chicago Arlington, VA 22217
536 South Clark Street 1 copy
Chicago, IL 60605

1 copy Naval Ocean Systems Center, Code 91
Headquarters-Computer Sciences &

Office of Naval Research Simulation Department
Branch Office/Pasadena San Diego, CA 92152
1030 East Green Street Mr. Lloyd Z. Maudlin
Pasadena, CA 91106 1 copy

1 copy
Mr. E. H. Gleissner

New York Area Naval Ship Research & Development Center
715 Broadway - 5th floor. Computation & Math Department
New York, N. Y. 10003 Bethesda, MD 20084

1 copy 1 copy

Naval Research Laboratory Captain Grace M. Hopper, USNR
Technical Information Division NAVDAC-OOH
Code 2627 Department of the Navy
Washington, D. C. 20375 Washingon, D. C. 20374

6 copies 1 copy

Assistant Chief for Technology
Office of Naval Research
Code 200
Arlington, VA 22217

1 copy


